[bookmark: _Toc38781184][bookmark: _Toc46318121][bookmark: _Toc46552479][bookmark: _Toc48382305][bookmark: _Toc49837461][bookmark: _Toc52951669][bookmark: _Toc73525757][bookmark: _Toc414871903][bookmark: _GoBack]Part III: The Page Property Sheet
Part III: The Page Property Sheet
Overview
Control Properties
Accessibility
Actions
Example: Changing Chart Labels, Titles and Data Display with Formulas
Appearance
Automatic type ahead
Behavior
Button Actions
Actions
Redirect
Send Email
Chart configuration
CKEditor
Code methods
Cute Editor
Events
Filter
Formatting
Images
Popups
Search
Validator
Page Properties
Configuring Master Pages
Queries Properties
Styles Properties
.NET Control Properties
Custom Button Properties
Using URL Parameters
Guidelines for Using HTML in Email
Calling a Custom Function When a Button is Clicked
Calling JavaScript Code When a Button is Clicked
Code Generation Tags
A Hello World Example Using the Image Tag
Code Generation Tag Properties
Example: Add Tool Tips to Controls
Example: Boldface a FieldValue Literal Tag
Overriding Properties
Example: Add a Mouse Over Message to a Button Tag
Example: Add a Print Button to a Web Page
FieldFilter Tag
FieldLabel Tag
FieldStatistic Tag
FieldValue Tag
HTML Tag
HyperLink Tag
Image Tag
ImageButton Tag
Label Tag
LinkButton Tag
Literal Tag
Menu Tag
Pagination Tag
PushButton Tag
Record Tag
SearchFilter Tag
TabContainer Tag
TabPanel Tag
Table Tag
Text Tag
UpdatePanel Control
Use Tag

[bookmark: _Toc38781186][bookmark: _Toc46318124][bookmark: _Toc46552482][bookmark: _Toc48382308][bookmark: _Ref48383756][bookmark: _Toc49837464][bookmark: _Toc52951672]

[bookmark: _Toc38781203][bookmark: _Toc38781221][bookmark: _Toc46318175][bookmark: _Toc46552540][bookmark: _Ref48375651][bookmark: _Ref48375735][bookmark: _Ref48375800][bookmark: _Ref48376272][bookmark: _Ref48376343][bookmark: _Ref48376369][bookmark: _Toc48382342][bookmark: _Toc49837536][bookmark: _Toc52951731][bookmark: _Toc38781296][bookmark: _Toc46307883][bookmark: _Toc46552782][bookmark: _Toc47676583][bookmark: _Toc47758921][bookmark: _Ref48390096][bookmark: _Toc53046048][bookmark: _Toc64196203][bookmark: _Toc414871904]Overview
Iron Speed Designer’s Property Sheet gives you almost complete control over page and control properties, business logic, queries that you run against the database and styles used on the page. You can hide or make the Property Sheet visible via the right click menu on any cell of the Layout Editor or via the View, Properties menu.
[image:]
[bookmark: _Ref412224160][bookmark: _Toc414871905]Control Properties
This section contains all properties related to individual controls and also allows configuring actions, events and other business logic. You have to select control on the Layout Editor to see this section for the control.
[image:]

	Property
	Description

	(ID)
	Shows id (programmatic name) of the selected control and allows renaming it.
	Applies To
	All controls

	ASCX file path
	Specifies the location of the associated ASCX control to include.
	[bookmark: _Hlk411175480]Applies To
	ASCX controls

	Checked value
	The value saved into the database when a selected check box field is saved. “Checked value” is generally set to ‘Yes’. While “Checked value” can be set to anything, typical values are True, T, Yes, and 1.
	Applies To
	Check Box

	Control type
	The type of the control to display. You can change control type for all generated fields.
	Literal
	Creates a Literal control without adding any HTML formatting. The resulting value is not enclosed in a tag. You can manipulate the text programmatically in the Presentation Layer code.
You may not add formatting via the Property Sheet.

	TextBox
	The Text Box control type displays a text entry box. Application uses can enter any text, and the associated database table and field will be searched for matching entries.
[image:]

	Label
	Creates a Label control. The label may include HTML formatting, including a surrounding HTML tag. The resulting value is enclosed in a tag. You can also manipulate the text programmatically in the Presentation Layer code.
You may also add formatting via the Property Sheet.

	Quick Selector
	Quick Selector control displays a button with all selected values. It opens a special Quick Selector page in a modal pop-up when clicked. This page allows easy search and selection of one or multiple values. Search for Quick Selector Page for more information.

	DropDownList
	The Dropdown List control type displays a list of values retrieved from the database. The list contains all values used in the designated database field.
[image:]

	ListBox
	The List box control type displays a list of values retrieved from the database. The list contains all values used in the designated database field.

	Radio Button List
	Displays a radio button list of choices, either retrieved from the database or provided directly by you. This works well for fields with 2 to about 10 values.
[image:]

	Image Button
	Displays a button containing an image retrieved from the database.
[image:]
See Button Actions and Properties for related options.

	Link Button
	Displays a button containing text retrieved from the database. The button is a hypertext link.
[image:]
See Button Actions and Properties for related options.

	Push Button
	Displays a push button containing text retrieved from the database.
[image:]
See Button Actions and Properties for related options.

	File Download
	Displays an ‘open file’ link to open the file.

Database field must be binary
If the underlying database field type is a binary field, your application assumes the file is stored in the database. The File Download control type only works with binary fields.
Table must have a primary key or virtual primary key
Tables containing a file must have either (a) a primary key field or (b) a field designated as a virtual primary key in Iron Speed Designer. Your application uses the primary key at run-time to fetch the file contents from the database.

	File Upload
	Displays a text entry field and a Browse button for selecting a file name. When the page is submitted, the file is uploaded into the designated database table and field.
[image:]

	Check Box
	Displays a check box. This control type is ideal for Boolean fields.
[image:]
The checkbox itself is unadorned. You will want to place some text in proximity to the checkbox within your page via the HTML Editor, indicating what the checkbox is for.
Checked is mapped to the string "Yes" by default. Unchecked is mapped to the string "" (Null) by default. Every other value maps to unchecked by default. All mappings can be changed using these properties:
“Checked value”
“Unchecked value”
“Treat other values as checked”

	Image
	Displays an image retrieved from the database.
[image:]
Image stored in database field
If the underlying database field type is a binary field, your application assumes the image is stored in the database. At application run-time, the image is retrieved from the database and displayed. Images can be any standard image type recognized by your browser, such as JPG, PNG, GIF, and BMP.
URL stored in database field
If the underlying database field type is a string field, your application assumes the field contains a URL to the image. URLs may be fully qualified or relative path, e.g.:
http://www.ironspeed.com/images/logo.gif
../images/logo.gif
Please note that the HTML maximum URL length is 256 bytes and some URLs can approach this in length.
Table must have a primary key or virtual primary key
Tables containing an image must have either (a) a primary key field or (b) a field designated as a virtual primary key in Iron Speed Designer. Your application uses the primary key at run-time to fetch the image contents from the database.
Broken images
Depending on the underlying database field type, if the database field does not contain an image or the image’s URL is invalid, the “broken image” symbol is displayed by your web browser.
[image:]
Similarly, if the underlying database field is not large enough to hold the entire image, the ‘broken image’ icon will be displayed by your web browser.

	Applies To
	All generated controls.

	Custom properties
	Additional user-defined properties passed through to the generated ASP.NET controls.
	Applies To
	All generated controls.

	Database field
	Designates from where the data is retrieved or saved.
The database field to be displayed in the format:
<TABLE>.<FIELD>
	Applies To
	Databound controls

	Date selector type
	The type of calendar date selector control displayed in date fields. A Date Selector control presents a calendar-like interface that lets application users select date values.
	Default
	Use the Application Generation Options dialog settings.

	AutomaticPopUp
	Automatically display the calendar date picker when the user clicks in the text box control.

	CalendarWithButton
	Displays an icon button adjacent to the text box control. The calendar date picker is displayed when the user clicks the button.

	None
	The calendar date picker is disabled.

The calendar’s date format is determined by the “culture” attribute in your application’s Web.config file, e.g.:
<globalization fileEncoding="utf-8" requestEncoding="utf-8" responseEncoding="utf-8" culture="en-US" . . .
You can set the culture attribute on the Languages step in the Application Wizard.
	[bookmark: _Hlk411185445]Applies To
	Text box (date fields only)

	Data source table
	Specifies a table which is used to populate data into this user interface control.
	Applies To
	Record and table controls

	Depends on
	Select parent control to implement “make, model, year” dependancies. Only controls from the same table or from the parent table are applicable.
	Applies To
	QuickSelector, Dropdown list, or Listbox controls

	Enter key button ID
	ID of the button to execute when the “Enter” key pressed.
	Applies To
	Editable controls

	Editor type
	Specifies which text editor control to use.
	CKEditor
	CKEditor is an independently provided third-party control. Requires license. See Part II: Customizing Your Application > Configuring Application Generation Options > CKEditor Notes

	Cute Editor
	Cute Editor is an independently provided third-party control. Requires license. See See Part II: Customizing Your Application > Configuring Application Generation Options > Cute Editor Notes

	HTML Editor
	HTML Editor is a lightweight editor provided by Ajax Toolkit. Does not require license. Performance is not as good as the other two rich text editors. See See Part II: Customizing Your Application > Configuring Application Generation Options > HTML Editor Notes

	ASP Multi-line
	The ASP.NET multi-line control available in the Microsoft .NET Framework.

	Default
	Use the Application Generation Options setting.

	Applies To
	Text Box

	File name field
	The companion database field containing the file name of an uploaded or downloaded file. Used for the File Download and FileUpload controls, this companion database field must be in the same table as the field containing the actual file contents.
File Upload
For File Upload, the file name of the uploaded file is stored in this field. The File Upload control displays a separate text box data entry field for entering a file name to upload into the database.
File Download
For File Download, the value of this field displays a file download link that when clicked opens (downloads) the file. The File Download control displays a clickable link to open (download) the file.
	Applies To
	File Download
File Upload

	Hide until searched
	Controls whether the table’s data grid is initially displayed when the panel is rendered on the screen.
	True
	The data grid is not displayed when the control is first rendered. The data and associated data grid are displayed only after the user selects appropriate filter options and clicks ‘Go’.

	False
	Data grid and associated data are displayed when the control is first rendered.

	Applies To
	Table

	Increment / decrement buttons
	Specifies whether increment and decrement buttons are displayed.
	True
	Increment and decrement buttons are created for the Page Size text box in the pagination control, Date fields, Currency fields, and other Numeric fields. Increment and decrement buttons for Date fields will only be created when the date is set to the default date format or “d”. Increment and decrement buttons are not created for any other date format.

	False
	Increment and decrement buttons are not created.

Increment and decrement buttons are enabled by default if this property is not present. You must explicitely set this property to False if you do not want increment and decement buttons for the designated field.
You can globally disable the generation of increment and decrement buttons in the Application Generation Options dialog (Tools, Application Generation Options...). If disabled globally in the Application Generation Options dialog, no increment and decrement buttons will be created anywhere in your application regardless of the “Encrement / decrement buttons” property setting for any individual control.
	Applies To
	Text box

	Ignore time when filtering dates
	If selected, performs a less precise comparison on date fields.
	True
	Performs a less precise comparison on date fields.

	False
	Performs a precise comparison on date fields including both date and time.

	Applies To
	DateTime filter controls

	Initial row display style
	Specifies how to display table rows when a table panel is first displayed.
	AllRowsCollapsed
	All rows are initially displayed as collapsed.

	AllRowsExpanded
	All rows are initially displayed as expanded.

	FirstRowExpanded
	Only the first row is displayed as expanded. All other rows are initially collapsed.

Note: After the page is initially displayed, application users may expand and collapse rows.
	Applies To
	Table

	Maximum generated items
	The maximum number of database query values automatically populated in the control. This applies to list-style controls, such as dropdown lists and list boxes. The default value used by Iron Speed Designer is 500 entries. However, you can change this threshold to any value desired on a control-by-control basis with “Maximum generated items”.
Note: If the number of entries at run-time exceeds the value of the “Large list selector threshold” property, a More link will be placed next to the field that, when clicked, displays the Large List Selector. If the “Large list selector threshold” is not specified, then “Maximum generated items” is used as the Large List Selector threshold.
If you wish to disable the Large List Selector for a particular control, set “Large list selector threshold” to a very large value.
	Applies To
	Dropdown List
List Box
Radio Button List

	Number of columns
	Number of columns in gallery table control.
	Applies To
	Gallery

	Number of rows
	The default number of data rows to display within the table at one time. Typically, this numeric value is displayed in the Pagination control associated with the table and can be adjusted at run-time by the application user.
To get an unlimited number of records to be displayed on the page, set the Page Size to -1. Note, however, this will not work in applications where an Add Record, Edit Record, or Show Record page returns to the page containing the table and the table is refreshed. This creates a “page size” error.
	[bookmark: _Hlk411190204]Applies To
	Table

	Panel layout
	Specifies how child panels are organized on a master-detail (parent-child) page, such as a Show Record page.
	Tabbed
	Tabbed panels are displayed inside a tab control.

	Stacked
	Stacked panels are displayed in a vertical column of tables.

	Applies To
	Tab Container

	Postback
	Specifies whether certain controls trigger a traditional page post back. Post back works in conjunction with the “Smooth panel update” property.
	True
	The button control triggers a traditional post back when clicked.

	False
	The button control triggers an asynchronous post back (Ajax-based smooth panel updating) when clicked.

Note: When the ‘Export data from’ button action is selected, PostBack is assumed to be True because this feature requires a traditional post back in order to function properly.
The PostBack property is not automatically created; you must manually enable it. If PostBack is not present, it is assumed to be ‘False’.
When a field is bound to a third-party control (e.g, FCKEditor) a postback may be necessary to retrieve the current field value. This is not a problem when page content is saved by clicking the ‘Save’ or ‘Save and New’ button which belongs to page, but it could be a problem for table row buttons. To avoid such problems, Iron Speed Designer adds the ‘PostBack = True’ property to all ‘Save’ and ‘Save and New’ buttons by default.
	[bookmark: _Hlk411207746]Applies To
	All types of button controls

	Priority number
	Specifies the priority of the Order Sort control. Table panel can have more than one Order Sort control and this property defines which control has a primary, secondary and so on sorting order.
	Applies To
	Order Sort control

	Quick Selector file name
	Specifies the location of the associated Quick Selector page.
	Applies To
	Any Quick Selector control

	Scope
	The portion of data included in the calculation.
	All Pages
	The statistic is calculated for the entire database table, after taking into account any filters and other limiting criteria applied to the table.

	Current Page
	The statistic is calculated for only those rows displayed on the current page.

	Applies To
	Statistic controls such as Page total

	Security
	Any security roles configured for an individual field. Individual roles are separated by a semi-colon (‘;’). When you open security dialog it shows only already configured roles. So see all roles uncheck ‘Show only roles in use’ checkbox and click on magnifying glass button.
When configured roles match roles of logged in user control is shown, otherwise it is hidden.
[image:]

	Applies To
	Text Box
Dropdown List
List Box
Radio Button List
Button
Label
Literal

	Selection mode
	Selection mode for the control: Single or Multiple items
	Applies To
	Quick Selector filter comtrols

	SQL query
	The SQL query used to generate the panel’s displayed results
	Applies To
	Table and Record control

	Time
	Time of day used when filtering.
When using a date range filter on a Table Report page, the default time string used for the filter is 00:00:00 indicating 12 AM. This works well if you are comparing with the “Is greater than or equal to” operator since you want to display all records greater than equal to the date entered by the end user.
For the “Is less than or equal to” operator, you can specify a default time string of 23:59:59 (11:59:59 PM). This allows the end user to enter a value for the To Date filter and retrieve all records that occur on or before the entered date.
	Applies To
	DateTime filter controls

	Title
	The panel’s title displayed in the tab.
Resource File Key
You can also dynamically fetch a text string from your application’s resource file (RESX) at application run-time by specifying a Resource Key. This is useful in multi-language applications that have multiple resource files, one for each language. This permits easy application localization by editing your application’s resource file instead of the application itself. Specify the Resource Key in curly braces, e.g.:
{Txt:MyTextString}
	Applies To
	Tab Panel inside tab container

	Treat other values as checked
	Specifies whether a check box field is displayed as selected when other values are encountered in the database.
Check box fields can be displayed as either selected (checked) or unselected (unchecked). The “Checked value” and “Unchecked value” properties designate the database values that signify whether the check box should be selected. These are typically values such as ‘True’ and ‘False’ or ‘1’ and ‘0’.
In some cases, the underlying database field may have values other than those specified by the “Checked value” and “Unchecked value” properties, e.g., the values may be ‘True’, ‘False’, and ‘Not Sure’.
	True
	Treats values other than those assigned via “Checked value” and “Unchecked value” as checked (True).

	False
	Treates values other than those assigned via “Checked value” and “Unchecked value” as unchecked (False).

If a hypothetical database column has a value of ‘Not Sure’, then the check box would be shown as checked if the “Treat other values as checked” property is set to ‘True’. The check box would be shown as unchecked if the “Treat other values as checked” property is set to ‘False.’
	Applies To
	Check Box

	Unchecked value
	Specifies the value saved into the database when an unselected check box field is saved. “Unchecked value” is generally set to ‘No’. While “Unchecked value” can be set to anything, typical values are False, F, No, and 0.
	Applies To
	Check Box

	URL
	The name of the primary key parameter passed in the URL and used to fetch a record to display.
	Applies To
	Record control

[bookmark: _Toc414871906]Accessibility
See .NET Control Properties for details.
[bookmark: _Toc414871907]Actions
Most actions are formulas where you can use any function from the extensive formulas list. See Part V: The Formula Language for details.
	Property
	Description

	Apply to
	Specifies table control filter applies to. One filter can be applied to one or more table controls. Filter can be applied only to direct children, grandchildren and so on.
	[bookmark: _Hlk411171392]Applies To
	Filter controls

	Chart title
	Specifies an initialization formula which sets value of the text displayed above the chart.
	[bookmark: _Hlk411172062]Applies To
	Chart controls

	Control visible
	Hides or sets control visible based on the value returned by formula.
	Applies To
	Most of buttons
Tab container

	Display As
	Specifies field or formula from the filter’s DataSource to be displayed on the QuickSelector button.
	Applies To
	Filter controls type of QuickSelector

	Index label
	Specifies field or formula from the chart’s DataSource which is displayed along the index axis or above the chart columns.
	[bookmark: _Hlk411172139]Applies To
	Chart controls

	Index remainder label
	Specifies text displayed along the index axis at the remainder value or above the remainder column.
	Applies To
	Chart controls

	Index title
	Specifies text displayed on the side or below the index axis.
	Applies To
	Chart controls

	Initialize
	Specifies an initialization formula which sets value of the filter on initial load. By default filter is initialized to a URL parameter if it is passed.
	Applies To
	Filter and search controls

	Initialize when adding record
	Initializes user interface control when page is loaded for the new records to be added in database.
	Applies To
	Editable databound controls

	Initialize when editing record
	Initializes user interface control when page is loaded for the existing records to be updated in database.
	Applies To
	Editable databound controls

	Initialize when showing record
	Initializes user interface control when page is loaded for records to be displayed but not edited.
	Applies To
	Non-Editable databound controls

	Populate from database
	Specifies a field which is being populated from the database into this dropdown list.
	Applies To
	Filter controls type of dropdown list

	Populate from static list
	Specifies constant values to be inserted in the dropdown list such as –PLEASE SELECT—.
	Applies To
	Filter controls type of dropdown list
OrderSort

	Redirect URL column
	Enables click through the chart’s column or bar. If URL is provided redirects to the specified page and passes through URL parameters to display relevant records.
	Applies To
	Chart controls

	Save into cookie
	Saves user interface control’s value into the specified cookie. You can modify the value to be saved, for example encrypt it.
	Applies To
	Editable databound controls

	Save into database
	Saves user interface control’s value into the database field. You can modify the value to be saved, for example encrypt it.
	[bookmark: _Hlk411172329]Applies To
	Editable databound controls

	Save into session variable
	Saves user interface control’s value into the session variable. You can modify the value to be saved, for example encrypt it.
	Applies To
	Editable databound controls

	Value data
	Specifies field or formula from the chart’s DataSource which returns a set’s value. Has to be numeric.
	[bookmark: _Hlk411172460]Applies To
	Chart controls

	Value title
	Specifies text displayed on the side or below the value axis.
	Applies To
	Chart controls

	Validate when saving record
	Implements custom data validation when saving database record
	Applies To
	Editable databound controls

[bookmark: _Ref283653996][bookmark: _Toc411929942][bookmark: _Toc413862247][bookmark: _Ref61334204][bookmark: _Toc414871908]Example: Changing Chart Labels, Titles and Data Display with Formulas
Use the Property Sheet (Actions group) to change chart values and titles.
 [image:]
[image: cid:image001.png@01D056AA.20B1B2D0]
The chart title is usually a simple text string. Labels and values sometimes may contain more complex formulas. For example, you may show a name (text) instead of an ID value:
 [image:]
[image: cid:image001.png@01D056AA.20B1B2D0]
Only fields included in the database query are available for use. By default, if you selected a primary key field as an index field in the Charting Wizard’s Options step, all non-binary and non-large text fields will be included in the query and are available for use. However, if the index field is not a primary key, only the index field will be included.
You can include, change or exclude fields and aggregate functions in the Query Wizard. Note, that adding fields potentially changes the result set because the SQL query must include a GROUP BY clause for all non-aggregate (those without functions) fields. Accordingly, the only case when final values will not be affected is when the original index field is unique (a primary key, for example).
Formulas are useful for implementing Display As (display foreign key as) functionality. For example, to create a chart of total sales per product category, you might want show category as category name, rather than as an ID value. In this case, select Category / CategoryID as an index and than modify the formula. Note, that same result set is possible to get if Products and CategoryID are selected, but in this case despite exactly same values for SUM only CategoryID field is included. So it is always a better strategy to select a primary key from the parent table instead of selecting a foreign key field in the child table for the index field.
Data formulas
Similarly you can change the data display formula. By default, the data formula fetches data from a database query via a LOOKUP() function, but you can select different data if your query contains more than one aggregate function, and you can modify the value with arithmetic operations. Also if you elected to show values as percentage in the Charting Wizard, the query retrieves values values and calculates percentages.
You can modify the display format of the data values, but make sure that your data’s formula always returns a numeric value.
To verify which query your chart uses, look in the Queries section of the Property Sheet.
[image:]
Note: when you modify your query, especially when adding or removing fields, you must ensure that any formula using the query is appropriately updated appropriately.
Using chart formulas in code customizations
These formulas are used when populating arrays of labels and values for a chart using one of the following methods:
GetComposedStringColumn(…)
GetComposedPercentageColumn(…)
GetComposedDecimalColumn(…)
For example:
Dim indexArray() As String = UnitPriceSumQuery.GetComposedStringColumn("""Employee :"" + LastName + "" "" + FirstName", EvaluateFormulaDelegate, EvaluateFormula("Resource(""Txt:RemainderLabel"")"))
Where the first string is a Formula. These calls are generated automatically but could be overridden in Set…Chart method on a Code tab for a chart.
[bookmark: _Toc414871909]Appearance
[bookmark: _Ref256517580]This group contains appearance properties such as font, color, border, etc.. One of the most frequently used property in this group is:
	Property
	Description

	Text
	The text to be shown for this control
	Applies To
	Filter controls

Note: Using a formula in the Actions group overrides this property. However this property is executed much faster so if you need to assign static value it is better to use this property.
See .NET Control Properties for details.
[bookmark: _Toc414871910]Automatic type ahead
This property group configures the Search control along with user type-ahead characteristics.
	Property
	Description

	Automatic type ahead
	Enables automatic type-ahead search. Auto type ahead does not apply to binary fields such as a Word document.
	True
	Enables the interactive search feature.

	False
	Disables the interactive search feature. False is assumed if this property property is not present.

	Delay before fetching
	The time, in milliseconds, that must pass before the Automatic Type Ahead feature fetches suggestions from the database. The value may be any integer greater than 0.
The default value is “Default” which represents the value specified in the Application Generation Options dialog. If the property is not present, then “Default” is assumed.

	Matched string display
	Specifies how to display matched text strings.
	AtBeginningOfMatchedString
	Displays strings starting from the word where the search text is found.

	InMiddleOfMatchedString
	Displays some text before the word where search text is found and some text after the word where search text is found.

	AtEndOfMatchedString
	Displays the text string upto and including the word where the search text is found.

	Maximum list size
	The maximum number of suggestions returned from the database by the Automatic Type Ahead feature.
The default value is “Default” which represents the value specified in the Application Generation Options dialog. If the property is not present then “Default” is assumed.

	Minimum number of characters
	The minimum number of characters that must be entered (typed) into the search control before Automatic Type Ahead fetches suggestions from the database.
The default value is “Default” which represents the value specified in the Application Generation Options dialog. If the property is not present, then “Default” is assumed.

	Search method
	Specifies how to search within text strings.
	WordsStartingWithSearchString
	Search for words beginning with the text entered in the search control’s text box containing words beginning after the separation characters specified in AutoTypeAheadWordSeparationCharacters.

	AnyWhereInString
	Search for text starting anywhere in the field.

	Default
	Use the value specified in the Application Generation Options dialog.

The default value is “WordsStartingWithSearchString”.

	Word separators
	Specifies a regular expression representing non-alphabetic characters that form a word boundary. AutoTypeAheadWordSeperators works only when the “Search method” property is “WordsStartingWithSearchString”.
The default value is [^a-zA-Z0-9]. Iron Speed Designer does not validate this string for syntactic correctness, so please be careful when changing the value.

[bookmark: _Toc414871911]Behavior
See .NET Control Properties for details.
[bookmark: _Toc414871912]Button Actions
This property group configures individual button behavior. Button actions determine what action is taken when a button is clicked. Several button styles are supported, including:
Image Button. You can display an Image Button whose text is extracted from the database.
Link Button. The Link Button displays a hypertext link button whose text is retrieved from the database.
Push Button. The Push Button displays a push button whose text is retrieved from the database.
While there are several button types, they share the same properties.
	Property
	Description

	Actions
	Specify actions to take when a button is clicked. See Actions for details.

	Redirect
	Configure page redirection action to take when button is clicked. See Redirect for details.

	Send email
	Configure email(s) to send when button is clicked. See Send Email for details.

[bookmark: _Ref411353124][bookmark: _Toc414871913]Actions
[image:]
	Action
	Description

	Add row to
	Add a new record to the database. Processing does not wait until a final “Submit” or “OK” button is clicked.

	Apply search and filter to
	Applies the current filtering criteria, including a search, to the control. This operation is normally used for the “Go” button in a search panel or a dropdown filter. The search term is entered into a separate text box field.

	Custom
	An application-defined custom command is executed when the button is clicked. When clicked, the button will emit an event by this name, which can be intercepted in a code extension to your application and processed. See Calling a custom function when a button is clicked for details.

	Delete current record
	In Show Record panels, the selected record is deleted from the database immediately. Processing does not wait until a final “Submit” or “OK” button is clicked.
In Edit Record panels, the selected record is removed from the control so that it is no longer displayed. The record is deleted from the database and the transaction committed only after a final “Save”, “Submit” or “OK” button is clicked.
Note: The ‘Delete current record’ command will only delete the designated record. It will not delete related records that refer to the deleted record. See Deleting related records for details.

	Delete selected row from
	In Table Report panels, the selected record(s) are deleted from the database immediately. Processing does not wait until a final “Submit” or “OK” button is clicked.
In Edit Table panels, the selected record(s) are removed from the control so that they are no longer displayed. The record(s) are physically deleted from the database and the transaction committed only after a final “Save”, “Submit” or “OK” button is clicked.
Note: The ‘Delete selected row from’ command will only delete the designated record(s). It will not delete related records that refer to the deleted record(s). See Deleting related records for details.

	Export data to PDF from
	Create a PDF report using data from the associated table. A file selection dialog is displayed when the button is clicked, prompting the application user for a file name.

	Export data to Excel from
	Create a Microsoft Excel file containing data from the associated table. A file selection dialog is displayed when the button is clicked, prompting the application user for a file name.

	Export data to CSV from
	Create an ASCII CSV file containing data from the associated table. A file selection dialog is displayed when the button is clicked, prompting the application user for a file name.

	Export data to Word from
	Create a Microsoft Word report using data from the associated table. A file selection dialog is displayed when the button is clicked, prompting the application user for a file name.

	Import data from
	Imports data into the selected table from ASCII CSV, Microsoft Excel and Microsoft Access files. A wizard is displayed when the button is clicked, prompting the application user for a file name and other details.
You must specify a ‘Go to specific URL’ action (via the Button Action Wizard) to launch the Import Wizard and designate the database table to receive the imported data. The URL has the format:
../Shared/SelectFileToImport.aspx?TableName=Categories
SelectFileToImport.aspx is the Import Wizard. ‘Categories’ is an example of the database table receiving the imported data.

	Pagination
	Perform the selected table pagination operation.

	Refresh page
	Restores the current page (or form) to its last presented state. For Add Record pages, the input fields are cleared of any data entered into them. For Edit Record pages, the data fields are restored to their original values from the database.
Refresh page causes record controls and table controls to refresh their data from the database, even if the fresh data was from a concurrent modification by another user. I.e., the most current data is always retrieved from the database. It does not restore from the web browser’s local cache.
Note: Refreshing a page does not reset the filter settings or clear the search text box. To clear the filters and search text box, simply redirect to the same page using the “Go to a specific URL” Button Action option.

	Save data on page
	Any input data and edited values on the page are updated (saved) into the database. Any deleted records are removed from the database.

	Save data on table or record
	Any input data and edited values in the selected table or record are updated (saved) into the database. Any deleted records are removed from the database.

	Sign out
	Sign out of the application. The application user is logged out.
The Sign Out event is always consumed by the Page unless some form of code customization is employed relating to this event.

	Update related panel(s)
	Button triggers post back on the related panel (such as Enhanced table with detail below)

	None
	Button does not trigger any action

[bookmark: _Ref63756948][bookmark: _Ref63757026][bookmark: _Toc64442245][bookmark: _Toc74401636][bookmark: _Toc74456385][bookmark: _Ref78088443]Several of the Action options require additional options to be specified.
	Option
	Description

	Enable client-side data validation
	The data entered into the page is validated by the application. All data in each data entry control on the page is validated.

[bookmark: _Ref86141292]Deleting related records
Sometimes when using the Delete Current Record action, you may see this error in your application:
"Cannot delete Main. A record you were attempting to modify is referenced by other records."
This happens because the Delete Current Record action does not recursively delete all the records in other tables that reference the deleted record. For example, if an Order Detail record points to the main Order record, the Order record cannot be deleted unless the Order Details records that reference the particular Order record are deleted.
You can accomplish this in several ways.
· If you are using Microsoft SQL Server, enable the "Cascade Delete Related Fields" feature through Enterprise Manager. Microsoft SQL Server will automatically remove the related records.
· Delete the related records (e.g., Order Detail records) through your application before deleting the master record (e.g., the Order record).
· Customize your application code to delete the Order Detail records before deleting the Order record. Do this by overriding the DeleteRecord method in the TableControl class. When overriding this method, delete the other (Order Detail) records first before calling the base DeleteRecord method:
Public Overrides Function DeleteRecord(ByVal recordIndex As Int32) As IRecord
To delete the OrderDetail records, write a simple “for” loop that goes through each record and calls the Delete method on each record. Retrieve the record group using the GetList method.

[bookmark: _Ref411353126][bookmark: _Toc414871914]Redirect
[image:]
	[bookmark: OLE_LINK114]Action
	Description

	Go back to the previous page
	Redirects to the previous page in the navigation history. For example when you click ‘Cancel’ or ‘Save’ button on the Edit record page you get redirected to the table page you came from.

	Close the browser window
	Closes current browsers window or tab. This is useful if you opened a page in the pop-up window or new tab.

	Navigate to a specific URL within a modal pop-up
	Opens new page in the modal pop-up on top of the calling page while disabling its content. Modal pop-up does not affect or update the page it was called from unless you specify control to be updated. For example you can open Add record page in the modal pop-up. See Part I: Getting Started > Customizing Web Page Behavior > Using Modal Pop-up pages for details.

	Navigate to a specific URL within a new window
	Opens new page in the new browser’s window or new tab depending on the browser’s settings. When page is closed it does not affect or update the page it was called from unless you specify control to be updated. See Part I: Getting Started > Customizing Web Page Behavior > Using Modal Pop-up pages for details.

	None
	No redirect action is applied.

[bookmark: _Toc412567949][bookmark: _Ref411353129]Linking Add, Edit, Show Record, and Table Pages
You may want to link together several pages after creating them with the Application Wizard. In particular, Table Report pages contain Edit and Show buttons as placeholder links to Edit Record and Show Record pages you may want to connect. However, these links are not connected and clicking them results in a “page not found” error.
Step 1: Use the Application Wizard to create these Add, Edit and Show Record pages.
Step 2: Use the Property Sheet to connect the unbound buttons using the Button Actions properties.
Step 3: Build and run your application.
	[image:]
	The Table Report pages created by the Application Wizard contain Edit and Show icons (notepad and magnifying glass, respectively) that are not connected to pages. You may optionally remove the Edit and Show buttons, or connect them to pages.

[bookmark: _Ref412568440][bookmark: _Toc414871915]Send Email

[bookmark: _Ref239242266]Email Addresses
[image:]
The Email Addresses step specifies which records to use when sending the email(s) and which email addresses to use.
When the button containing this action is within a Record control, an email can be sent only for the current record. If the button containing this action is within a Table control, an email can be sent for each selected record or for all records. Please note that ‘All records’ includes records that may not be currently displayed on the page. For example, if the filtered set includes 50 records but only 10 are currently displayed on the page, selecting this option will send emails for each of the 50 records.
	Options
	Description

	Send email for
	Send email for selected set of records. There are 3 options available:
	Current record (first selected, clicked or displayed)
	Send an email for first selected or clicked record in the table control or for the currently displayed record in the record control.

	All selected records
	Send an email for each selected record in the table control. This option should not be used for buttons placed in record controls.

	All records
	Send an email for each record in the table control, using the application user’s current filter selections. This option should not be used for buttons placed in record controls.

You can enter only one “From” email address since an email may have only one sender. If you already have an email address in the From field, press the From... button to edit the existing email address. If the From field is empty, press the From... button to add a new email address.
[image:]

	Options
	Description

	Email address
	An email address can be a simple text string, a substitution variable or a field value. Text string email addresses are used exactly as specified in the Constant field. Substitution variables are placed in the Constant field and are evaluated after the button click at application run-time. When evaluated, a data value is substituted for the substitution variable.
See Button Actions - Substitution Variables for further details on how substitution variables are handled.

	Email display name
	The email display name is optional. If nothing is specified, the display name is the same as the email address.
Display names can be simple text strings, a substitution variable or a field value. Substitution variables are placed in the Constant field and are evaluated after the button click at application run-time. When evaluated, a data value is substituted for the substitution variable.
See Button Actions - Substitution Variables for further details on how substitution variables are handled.

[bookmark: _Ref239242267]Email Content
[image:]
The Email Content step specifies the body and content of the email.
	Options
	Description

	Subject
	Specifies the email’s subject line. Use the “Insert variable...” button to insert substitution variables into the subject line text. The substitution variable will be evaluated at application run-time after the button click and data from the table or record control substituted in place of the variable.

	Body Content
		Web page
	Specifies the web page to be used as the email’s content.
See Step 2: Redirect URL for more information about the URL.

	Text with substitution variables
	Specifies the text to be used for the email body. Use the “Insert variable...” button to insert a substitution variable into the text. The variable will be evaluated at application run-time after the button click and data from the table or record control substituted in place of the variable.

	Images
	Specifies how to display images used in the email body.
	Referenced by fully qualified URLs
	Images and style sheets of the web page are referenced by fully qualified URLs.

	Embedded
	Images are attached to the email. Use this option in cases where images cannot be referenced by fully qualified URLs, such as when the message recipient is behind a firewall or when the source of the image is a database. Note, however, the size of the email will increase when using this option.

	Javascript
	If your email content contains javascript, the email has a greater chance to be filtered and put into the spam folder. Therefore you have an option to remove or retain javascript when emailing. The default selection is 'Removed from email'.

When the content of an email is sourced from a URL, your web server must retrieve the page at that URL at run-time. The retrieval of the URL content occurs in a separate session from the one used to process the page.
When the application uses URL encryption, the default encryption key is generated using the session ID of the current session. Since the encryption of the URL and its decryption occur in different sessions, the URL parameters cannot be successfully decoded using the default encryption key. This can be fixed by removing the session ID as a component of the encryption key used by the application.
To use encrypted URL parameters while sending email from the application, modify the GetCryptoKey() function in the Crypto class of the Data Access Layer of the application as follows:
Private Function GetCryptoKey() As String
	Return BaseClasses.Configuration.ApplicationSettings.Current.URLEncryptionKey
End Function
Since the encryption key does not rely on the session ID, the URL parameters can be decrypted in a different session than where they were encrypted.
[bookmark: _Ref239242269]Finish
[image:]
The Finish step shows a summary of the button actions to be added.
[bookmark: _Toc414871916]Chart configuration
This section is a collection of properties that are responsible for chart code generation. In addition to this set there are a lot of standard ASP .NET properties for charts.
	Property
	Description

	Axis label font size
	Specifies the font size of the chart axis title.
	[bookmark: _Hlk411175494]Applies To
	Chart controls

	Axis scale font size
	Specifies the font size of the axis scale.
	Applies To
	Chart controls

	Background color
	Specifies background color of the chart.
	Applies To
	Chart controls

	Bar width
	Specifies the width of the chart’s bar or column.
	Applies To
	Chart controls

	Chart title font size
	Specifies the font size of the chart’s title.
	Applies To
	Chart controls

	Chart type
	Type of the chart: column, bar, line of pie.
	Applies To
	Chart controls

	Color
	Specifies the color of the chart’s bar, column or line.
	[bookmark: _Hlk411184429]Applies To
	Chart controls

	Consumer
	Specifies a consumer of this control
	Applies To
	Chart date pagination controls

	Data source name
	Select a name of the data source that populates this chart control. You can configure selected data source in the Queries section of the Property Sheet.
	Applies To
	Chart controls

	Font color
	Specifies font color of the chart’s text.
	Applies To
	Chart controls

	Font type
	Specifies font type of the chart’s text.
	Applies To
	Chart controls

	Grid color
	Specifies color of the chart’s grid lines.
	Applies To
	Chart controls

	Label format
	Specifies format of the chart’s label text, such as ’00.0%’.
	Applies To
	Chart controls

	Label inside font size
	Specifies font size of the label inside the chart.
	Applies To
	Chart controls

	Show inside bar
	Indicates what to show inside chart: index labels inside bars or values at bar end or nothing.
	Applies To
	Chart controls

	Show largest first
	Show largest value first. (Non-time interval charts only.)
	Applies To
	Chart controls

	Show percentage
	Specifies if chart values should be shown as percentage of the total rather than the actual values.
	Applies To
	Chart controls

	Use default color scheme
	Apply default color scheme according to the settings of Application Generation Options.
	Applies To
	Chart controls

	Use palette
	Specifies whether to use multicolor palette for Bar, Column or Line style chart instead of a solid color. Palette is always used for a Pie chart.
	Applies To
	Chart controls

	X-Axis label angle
	Specifies the angle at which the text is drown along the chart’s X-axis.
	Applies To
	Chart controls

[bookmark: _Toc414871917]CKEditor
	[bookmark: _Hlk411185016]Property
	Description

	Editor height
	[bookmark: OLE_LINK115][bookmark: OLE_LINK116][bookmark: OLE_LINK117]The height of the editor control window, in pixels.

	Editor width
	The width of the editor control window, in pixels.

[bookmark: _Toc414871918]Code methods
The Code methods group provides access to the most commonly customized functions for the currently selected control in the Layout Editor. For data bound controls such as a textbox displayed on the Add or Edit page, the Code methods show the Set, Get and Validate functions. Similarly, selecting a button control shows its Click function, or selecting a dropdown list shows its SelectedIndexChanged, Populate and other functions. Zooming out to the Table Control or the Record Control level will display functions such as CreateWhereClause, LoadData, DataBind and SaveData that are relevant to the selected controls.
Clicking ‘…’ button on Property Sheet for any method opens code editor. Modification of the code in the code editor automatically places a copy of the function in Section 1 of the underlying code file. At any point, clicking Restore will remove all the customizations and reset the function to its originally created code. Subsequent builds will also preserve the customizations, and the changes made will never be overwritten, unless explicitly restored.
Clicking the Code Docs button in the code editor opens documentation related to the specific method.
[image:]
Some of the code methods are:
	Code method
	Description

	CreateOrderBy
	Constructs an ‘Order By’ object that defines the sorting order in the table or record control query.

	CreateWhereClause_DropDown
	Constructs the WHERE clause for the query that populates the dropdown list.

	CreateWhereClause_ListBox
	Constructs WHERE clause for the listbox query

	Createwhereclause
	Constructs WHERE clause for the table or record control query.

	CheckedChanged
	Implements your custom code when selected value changes in user interface control.

	Click
	Executes your custom code when button is clicked.

	DataBind
	Initializes all user interface controls to their corresponding database field values, using the fields’ respective initialization formulas.

	Get
	Retrieves value from the user interface control.

	GetUIData
	The GetUIData method is called from SaveData to retrieve the values from the user interface controls into a database record so that it can be saved

	Init
	Handles the Init event for this control.

	Load
	Handles the Load event for this control.

	LoadData
	Loads the data value from the database, sets the appropriate pagination and then calls the CreateWhereClause() and CreateOrderBy() code methods.

	Populate
	Initializes user interface control with values.

	PreRender
	Handles the PreRender event and then calls the LoadData() and DataBind() code methods.

	SaveData
	Saves data from the table or record control into the database.

	SelectedIndexChanged
	Implements your custom code when selected value changes in user interface control.

	Set
	Sets value into the user interface control.

	TextChanged
	 Executes your custom code when text is changed in user interface control.

	Validate
	Executes your custom data validation code on user interface control.

[bookmark: _Toc414871919]Cute Editor
	Property
	Description

	Editor height
	The height of the editor control window, in pixels.

	Editor width
	The width of the editor control window, in pixels.

[bookmark: _Toc414871920]Events
Certain client side events are listed in this section, primarily generated JavaScript event handlers.
	Property
	Description

	OnClick
	JavaScript executed when the control is clicked or selected.
	Applies To
	Checkbox

	OnKeyPress
	JavaScript executed when a key is pressed.
	[bookmark: _Hlk411188370]Applies To
	Dropdown List

	OnMouseOut
	JavaScript executed when your mouse leaves the button.
	Applies To
	Button controls

	OnMouseOver
	JavaScript executed when your mouse is over the button.
	Applies To
	Button controls

[bookmark: _Toc414871921]Filter
	Property
	Description

	Database field
	Specifies the database field to which the filter applies in the format:
<TABLE>.<FIELD>
	Applies To
	List Box

	Field to filter
	Specifies the database field to which the filter applies in the format:
<TABLE>.<FIELD>
	Applies To
	Quick Selector
Dropdown List
Text Box

	Index field
	Specifies the database field from which the list is populated

	Filter operator
	Specifies the filtering operation to apply.
Date / Numeric operators
	=
	Is equal to

	<>
	Is not equal to

	>=
	Is greater than or equal to

	<
	Is less than

	<=
	Is less than or equal to

See Setting the default time string for date range filters.
String / Text operators:
These filter operators are usually only used with String / Text-type database fields:
	CONTAINS
	Contains

	NOT_CONTAINS
	Does not contain

	STARTS_WITH
	Starts with

	NOT_STARTS_WITH
	Does not start with

	ENDS_WITH
	Ends with

	NOT_ENDS_WITH
	Does not end with

Using them with numeric or date fields may not be supported in some cases depending on the field's validation type, display format and storage formats. These operators allow filtering by “fragments” of field values, and these fragments often cannot be parsed or interpreted correctly for fields that use certain types of format strings.
For example, using the Contains operator on a date field searching for '12' should work correctly. However, searching for '12/30' may not work correctly, because the '/' isn't actually stored in the database field.

	Maximum generated items
	The maximum number of database query values automatically populated in the control. This keeps a filter list from becoming excessively large. If the number of values exceeds the maximum displayed values, only the maximum number are displayed.
Please note that this setting only works for filter dropdowns; it does not for data selection dropdowns.
	Applies To
	Dropdown List

[bookmark: _Toc414871922]Formatting
	Property
	Description

	Allow wrapping
	Specifies whether displayed text can be wrapped.
	True
	Allow text wrapping.

	False
	Do not allow text wrapping.

	Display format
	Specifies a field’s display format, typically for numbers and dates. It also specifies the type of text editor used for general text fields.
Other special formats apply:
	Default
	Use the Global Display Options dialog settings.

	Applies To
	Text Box

	Display when contains value
	The formatted text displayed when field contains a value.
See TextFormat property for details.
	Applies To
	Literal
Text Box

	Display when NULL
	The text to be displayed or inserted into the database if the underlying database field has a “null” value (no value). This is typically set to ‘ ’
	Applies To
	Label
Literal

	HTML encode value
	Specifies whether to render HTML tags when displaying text. If a field contains HTML code, you can configure the field to render (display) the HTML rather than display ‘raw’ unrendered text.
	True
	Display text without rendering (executing) HTML tags. Any embedded HTML tags are displayed as ‘HTML source’.

	False
	Display text as rich text. Embedded HTML tags are rendered.
Note that rich text is displayed only if the text can be fully displayed. The amount of text in the field, including embedded HTML tags, must be less than the “Maximum display length” property value.

	Default
	Use the Application Generation Options setting.

	Applies To
	Label
Literal

	HTML encode white space
	Specifies whether to HTML encode white space, limiting word-wrapping.
	True
	HTML encodes white space. Multiple words in a text string are not wrapped.

	False
	Does not HTML-encode white space. This is the the default if this property is not set.

“HTML encode white space” can be combined with the “Allow wrapping” property to achieve various effects. For example, “HTML encode white space = True” and “Allow wrapping = False” respects the white space, carriage return and line feed characters in the HTML, preserving white space; e.g., if you have 10 contiguous spaces, 10 spaces will be output in the field.
	Applies To
	Label
Literal

	Maximum display length
	The maximum number of characters displayed on for a text field, limiting the display of long ‘note’ fields in order to conserve screen real estate.
Text display limited for mobile pages
To reduce the bandwidth required for mobile Show Record pages, text strings longer than 32K are automatically truncated and appended with an ellipses (“…”). here is no truncation on mobile Edit Record and Add Record pages.
Use with “Pop ups” property
“Maximum display length” may be used in conjunction with the “Pop ups” property to display a limited amount of text on the web page and complete text in the pop-up.
“Maximum display length” also governs the number of characters displayed in PDF Reports created by Iron Speed Designer (PDF Report).
Any positive integer may be specified; the lowest permitted value is 1. Several special values are permitted:
	Default
	Represents the default value specified in the Application Generation Options dialog, typically 100 characters.

	Max
	Allows an unlimited amount of text to be displayed.

The default value is the “Default”. If any invalid value is specified (e.g., 0 or negative number), then all characters in the field are displayed on the web page.
Field contents are truncated and HTML tags do not render properly
The contents of a rich text field will be truncated if “Maximum display length” is less than the length of the contents in the field. If the contents of a rich text field are truncated, various HTML tags may be displayed rather than rendered as HTML. To “remove” the HTML tags from displaying, increase “Maximum display length” to exceed the length of the contents stored in the field or the length of the database field itself.
	Applies To
	Label
Literal

[bookmark: _Toc414871923]Images
	Property
	Description

	Image height
Image width
	The displayed image size in pixels. When specified, images are not displayed at their normal size but are scaled according to the sizes specified by ImageWidth and ImageHeight. Both ImageWidth and ImageHeight must be provided in order to specify the image size in pixels. ImageWidth and ImageHeight are used in conjunction with the “Pop ups” property.
ImageWidth and ImageHeight may be used when “Image percent size” is not specified. Any positive integer value may be specified. No default value is assumed for these properties.
“Image percent size” has higher priority over ImageWidth and ImageHeight. If all three are specified then the image will be displayed according to the “Image percent size” value. If the “Image percent size” property is missing, ImageWidth and ImageHeight values are used.

	Image percent size
	The size of the thumbnail image displayed. When specified, images are not displayed at their normal size but are scaled according to the percentage specified by “Image percent size”. “Image percent size” is used in conjunction with the “Pop ups” property.
“Image percent size” specifies a percentage of the image’s actual size. Any positive number starting from 0.0 may be specified. Values less than 1.0 are taken as an actual percentage. For example, a value of 0.3 is interpreted as 30% and the image will be displayed with 30% of its original size.
The default value for “Image percent size” is the “default” string which represents a default value, typically 20%.
	Default
	Display the image at its default size, typically 20% of its full size.

	Maximum image height
Maximum image width
	Images are displayed unaltered up to ImageMaxWidth and ImageMaxHeight (pixels). Images exceeding this size are proportionately reduced by setting the HTML “width” and “height” parameter to ImageMaxWidth and ImageMaxHeight.

[bookmark: _Toc414871924]Popups
	Property
	Description

	Display threshold
	The minimum number of characters before an Ajax-enabled text pop-up can be displayed. The text pop-up will be displayed if the number of characters in the individual database field exceeds “Display threshold”. “Display threshold” is used in conjunction with the “Pop ups” property.
The default value is the “default” string which represents the default value, typically 100 characters. Any positive integer may be specified. A text pop-up is always displayed if any invalid value is specified (e.g., characters or negative numbers).
	Applies To
	Label
Literal

	Pop ups
	Enables Ajax-based text and image pop-ups for the field.
	True
	Pop-ups are enabled for appropriate field types.

	False
	Pop-ups are disabled for appropriate field types.

	Default
	Use the Application Generation Options default.

Text pop-ups
Text pop-ups are displayed if the underlying database field type is a string or character field. The “Display threshold” property specifies when text pop-ups will be displayed.
If the field’s Validation Type is Password, then no pop-up is displayed.
Image pop-ups
Image pop-ups are displayed only if the Control Type is ‘Image’.
If the underlying database field type is a string, no image scaling will occur on the underlying web page because the field is assumed to contain a URL and not the binary contents of an image. However, the pop-up will be displayed.
Text and image pop-ups require Internet Explorer 7 or later.
	Applies To
	Image
Label
Literal

	Window height
Window width
	The pop-up window width and height, in pixels. Any positive integer value may be specified. PopupWindowWidth and PopupWindowHeight are used in conjunction with the “Pop ups” property.
The default PopupWindowHeight value is 200 pixels. The default PopupWindowWidth value is 300 pixels. If PopupWindowWidth and PopupWindowHeight are not present, then their default values are used.
	Applies To
	Image
Label
Literal

	Window persistance
	Specifies whether a pop-up window should persist until the mouse is moved. PopupWindowPersist is used in conjunction with the “Pop ups” property.
	True
	The pop-up appears on mouse-over and stays as long as the mouse is not moved over any other part of the page which is a hot spot for the pop-up.

	False
	The pop-up appears on mouse-over and disappears on mouse-out. If the application user wishes to make the pop-up persist, they can single click the mouse while the pop-up is open.

If PopupWindowPersist is not specified, then ‘False’ is assumed.
	Applies To
	Image
Label
Literal

	Window scroll bars
	Enables scroll bars in a pop-up. PopupWindowScrollBar is used in conjunction with the “Pop ups” property.
	True
	Scroll bars are enabled. Scroll bars are displayed only if the text or image content exceeds the size of the pop-up window.

	False
	Scroll bars are disabled. If the text or image content exceeds the size of the pop-up window, no scroll bar will be displayed and the pop-up window will grow to accommodate the content.

If PopupWindowScrollBar is not present, the default value ‘True’ is assumed.
	Applies To
	Image
Label
Literal

	Window title
	The title for the pop-up window. PopupWindowTitle is used in conjunction with the “Pop ups” property. Valid input can be any text.
The default value is: %ISD_DEFAULT%
	%ISD_DEFAULT%
	This represents the column name in the database.

If PopupWindowTitle is not present, then no title will be displayed.
	Applies To
	Image
Label
Literal

[bookmark: _Toc414871925]Search
The Search property group configures a search text control.
	[bookmark: OLE_LINK107][bookmark: OLE_LINK108][bookmark: OLE_LINK109]Property
	Description

	Case sensitive
	Indicates whether the search should be case sensitive.
	True
	Perform a case-sensitive text search.

	False
	A case-sensitive search is not performed.

	Filter operator
	The type of search operation to apply to the selected database fields.
	Is Equal To
	An exact match is required.
Microsoft SQL Server only. If the underlying database field selected for the search operation is a Microsoft SQL Server 'char' data type, the actual value stored includes blanks padded at the end of the string. As such, text strings entered into the search control will not match the char data type field, because the search control strips the trailing spaces from the search string.

	CONTAINS
	The database field must contain the search string.

	STARTS_WITH
	The database field must start with the search string.

	ENDS_WITH
	The database field must end with the search string.

	Search fields
	Specifies the database fields to be searched.

[bookmark: _Toc413862246][bookmark: _Ref127694050][bookmark: _Toc197922458][bookmark: _Toc354173308][bookmark: _Toc411929907]Configuring Full Text Search
Full-text Search is an optional component of SQL Server that allows fast and efficient querying of large amounts of unstructured data. Unlike character-based comparisons used in SQL LIKE expressions, full-text search performs linguistic searches by operating on words or phrases. Querying large amounts of data using full-text search can provide significant performance gains over character-based searches as well as gains in usability.
For example, running a LIKE query against millions of rows of text data may take tens of seconds or even minutes to return; whereas a full-text query can take only seconds or less against the same data.
Doing linguistic searches instead of character-based searches also adds other levels of usability. For example, when searching on a given word, full-text search not only tries to match on the given word, but can also match on forms of the given word or even on other words that have similar meaning. For example, searching on “house” can also yield matches on “houses”, “housing”, or even “home”.
Instructions for setting up and configuring full-text search in SQL Server can be found in the relevant SQL Server documentation. This document describes how Iron Speed Designer makes use of full-text search.
Iron Speed Designer supports integration with Full-text Search in SQL Server 2008 databases.
Supported data types
Full-text indexes may be created on the following SQL Server data types:
char, varchar, nchar, NVARCHAR, text, NTEXT, image, xml, VARBINARY, or VARBINARY(max)
Iron Speed Designer supports querying on all these data types using Full-text Search.
Full-text Search supports indexing of documents including Microsoft Word, Excel, PDF, etc., stored in VARBINARY, VARBINARY(max), image, or xml fields. This means you can store documents in your database and easily allow users to search for content contained in those documents.
Finding full-text indexes
When Iron Speed Designer queries database schema, it looks for full text indexes. Fields with full-text indexes can be seen in the Databases area.
[image:]
Adding full-text fields to search filters
The main benefit of integrating full-text search in a generated application is to allow users to do free-form searches using search filters. For example, using the Document table in the AdventureWorks database, the Document field which contains a full-text index can be included as one of the fields in a search filter.
[image:]
[image:]
[image:]
Simple full-text queries
Once full-text-enabled fields have been added to search filters, users can enter simple search strings that utilize full-text search capabilities. These are entered in the “Search for” filter on the page – the same place where non-full-text searches are done.
[image:]
Examples of simple search strings are:
	Search Type
	Example
	Example matching text in Document

	Single word
	bracket
	This section covers the assembly of the front reflector to the front reflector bracket.

	Multi-word
	crank spindle
	Both crank arms were tightened to the spindle at the Adventure Works Cycles factory.

	Exact Match
	“crank arm”
	Crank Arm and Tire Maintenance

The SQL queries that are generated by Iron Speed Designer make use of full-text “CONTAINS” clauses. In the Single word example the resulting CONTAINS clause looks like:
WHERE CONTAINS(Document, ' (FORMSOF(INFLECTIONAL, bracket) ')
Notice that it utilizes the FORMSOF and INFLECTIONAL qualifiers, which mean to match not only on the exact word but also on other forms of the word.
In the Multi-word example the resulting clause is similar but also contains an AND condition:
WHERE CONTAINS(Document, ' (FORMSOF(INFLECTIONAL, crank) AND FORMSOF(INFLECTIONAL, spindle)) ')
In the quoted example, the query tries to find exact matches.
WHERE CONTAINS(Document, ' "crank arm" ')
NOTE: Full-text queries are always case-insensitive.
NOTE: Iron Speed Designer does not return matches with highlighting as in the previous table. Those are examples to show how matching is done. Search results are returned as matching record rows such as:
[image:]
Search filters may contain a combination of both full-text enabled fields and regular non-full-text fields. For example the Document table in the Adventureworks database contains a full-text index on the Document field, but no full-text index on either the FileName or DocumentSummary fields. These can all be combined into one search filter.
[image:]
[image:]
[image:]
The result is that when generating a SQL query, the full-text-enabled fields will cause “CONTAINS” clauses to be added and the non-full-text-enabled fields will cause “LIKE” clauses to be added.
Advanced full-text queries
Iron Speed Designer also supports more advanced forms of full-text searching that make use of keywords and special characters.
	Search Type
	Example
	Description

	“and” keyword
	crank and arm
	Searches for documents that contain both “crank” AND “arm”

FORMSOF(INFLECTIONAL, crank) AND FORMSOF(INFLECTIONAL, arm))

	“or” keyword
	tire or air
	Searches for documents that contain “tire” OR “air”

FORMSOF(INFLECTIONAL, tire) OR
FORMSOF(INFLECTIONAL, air))

	“not” keyword
	hardware not seat
	Searches for documents that contain “hardware” but not “seat”

FORMSOF(INFLECTIONAL, hardware) AND NOT FORMSOF(INFLECTIONAL, seat))

	“near” keyword
	washer near nut
	Searches for documents that contain “washer” near in proximity to “nut”

FORMSOF(INFLECTIONAL, washer) NEAR FORMSOF(INFLECTIONAL, nut))

	“-“ character, equivalent of “not” keyword
	hardware -seat
	Searches for documents that contain “hardware” but not “seat”

FORMSOF(INFLECTIONAL, hardware) AND NOT FORMSOF(INFLECTIONAL, seat))

	“+“ character, equivalent of “and” keyword
	hardware +seat
	Searches for documents that contain “hardware” AND “seat”

FORMSOF(INFLECTIONAL, hardware) AND FORMSOF(INFLECTIONAL, seat))

	“~“ character, thesaurus
	~seat
	Searches for documents that contain words that mean the same as “seat” utilizing the thesaurus

FORMSOF(THESAURUS, seat)

	“*” character, prefix
	assemb*
	Searches for documents that contain words that begin with “assemb”

Keyword and special character terms can be combined in several ways such as:
· hardware and assemb*
· washer or ~seat
· tire* not ~nut
Known limitations with keyword and special character searches:
· Keyword and special character search terms are designed to work in simple cases. More complex cases with multiple combinations of keywords and special characters may result in complex queries that do not return expected results.
· One case that is known to return no result is combining two “not” terms such as
“-word1 –word2”.
Searching in multiple fields and computed columns
When you add more than one full text search enabled field to the search control you need to keep in mind that Iron Speed Designer generated application constructs the where clause on column by column basis. So for example in you include two fields ‘Document’ and ‘Title’ and search for ‘hardware seat’ as in example above, application will produce WHERE clause like this:
WHERE Contains([TableName].[Document],’FORMSOF(INFLECTIONAL, hardware) AND FORMSOF(INFLECTIONAL, seat))’) OR Contains([TableName].[Title], ’FORMSOF(INFLECTIONAL, hardware) AND FORMSOF(INFLECTIONAL, seat))’)
While this will perfectly work on all contains and like queries when you are searching for the strings to be included, that has unexpected results for searches with exclusion clause. For example the search on the same columns for ‘hardware –seat’ will produce WHERE clause as:
WHERE Contains([TableName].[Document],’FORMSOF(INFLECTIONAL, hardware) AND NOT FORMSOF(INFLECTIONAL, seat))’) Or Contains([TableName].[Title], ’FORMSOF(INFLECTIONAL, hardware) AND NOT FORMSOF(INFLECTIONAL, seat))’)
So if you have a record where Title is ‘Comfortable seat’ and Document is ‘Our hardware shop is the best’ it will be returned by this query because the Document field satisfies search criteria and the fact that Title is not does not matter.
If you need to be able to exclude results based on any column (so that if excluded string matches a string in any of the columns included in the search record is excluded also) the solution is to create full text search enabled persistent computed column where concatenate all your search columns and search only in this column. This approach has additional benefit of a better performance also.
Adding full-text fields to where clauses
In addition to support for full-text queries in search filters, Iron Speed Designer allows full-text-enabled fields to be included in WHERE clauses.
WHERE clauses are added using the “Add WHERE Clause…” feature. The clause editor allows selection of a table and field, an operator, and a value.
[image:]
The clause operators that work with full-text-enabled fields are:
	Operator
	Example
	Description

	is like
	is like clamp
	Searches for documents that contain forms of the word “clamp”

WHERE CONTAINS(Document,
' FORMSOF(INFLECTIONAL, clamp) ')

	is not like
	is not like clamp
	Searches for documents that contain forms of the word “clamp”

WHERE NOT CONTAINS(Document,
' FORMSOF(INFLECTIONAL, clamp) ')

	contains
	contains crank arm
	Searches for documents containing “crank”AND “arm”

WHERE CONTAINS(Document, ' (FORMSOF(INFLECTIONAL, crank) AND FORMSOF(INFLECTIONAL, arm)) ')

	contains
	contains \”crank arm \”

i.e. quoted
	Searches for literal “crank arm”

WHERE CONTAINS(Document, ' "crank arm" ')

	does not contain
	does not contain crank
	WHERE NOT CONTAINS . . .

[bookmark: _Toc414871926]Validator
	Property
	Description

	Display
	Specifies whether the space for the validation text and error message is pre-reserved or allocated dynamically at run-time.
	None
	The validation message is never displayed inline.

	Static
	Space for the validation message is allocated inline (default if not specified).

	Dynamic
	Space for the validation message is dynamically allocated when needed.

Example:
	OrderDateRequiredFieldValidator:Display
	Applies To
	Text Box

	Initial value
	Initial watermark text displayed in the control, e.g., “Enter Title here”. The watermark is not a real permitted value; it is a temporary value. The required validator treats this value as if the user did not enter anything in the text box.
“Initial value” also specifies a value for the ‘NO-SELECTION’ entry for dropdown lists. The “Initial value” property applies only when the “Required” property is set to ‘True’. Upon saving, the selected value is compared to the initial value, and if they are the same, an error is displayed to the user requesting they select a value.
	Applies To
	Dropdown List
List Box

	Required
	Indicates that the field is required. If selected, an application user must provide a value for the field when using the Add Record or Edit Record pages.
	True
	Create a ‘required’ validator for the control.

	False
	Do not create a ‘required’ validator for the control.

	Applies To
	Text Box

	Text
	Message displayed on the web page when an incorrect value is entered.
Resource File Key
You can also dynamically fetch a text string from your application’s resource file (RESX) at application run-time by specifying a Resource Key. This is useful in multi-language applications that have multiple resource files, one for each language. This permits easy application localization by editing your application’s resource file instead of the application itself. Specify the Resource Key in curly braces, e.g.:
{Txt:MyTextString}
	Applies To
	Text Box

[bookmark: _Ref412224168][bookmark: _Toc414871927]Page Properties
	Options
	Description

	Master Page,
Title
	Configures master pages, page title and menu for this page. Each page has three master pages associated with it: default, modal pop-up, which is used when page opened in a modal pop-up frame, and new window pop-up, which is used when page is opened in a new window. See Part I: Getting Started > Customizing Web Page Behavior > Using Modal Pop-up pages for details.
[image:]

	Page directives
	ASP.NET directives to include in the generated page’s prologue or epilogue areas.

	Page security
	Any security roles configured for an page. Individual roles are separated by a semi-colon (‘;’). When you open security dialog it shows only already configured roles. So see all roles uncheck ‘Show only roles in use’ checkbox and click on magnifying glass button.
When configured roles match roles of the logged in user, the page is shown, if they do not match, user is redirected to special Forbidden page. If user is not logged in he(she) is redirected to Sign-In page.
[image:]

	Page type
	Indicates the type of page to create.
	Options
	Description

	Page (ASPX)
	A page (ASPX file) is created.

	Button ASCX control
	A header panel (ASCX file) is created.

	Custom ASCX control
	A user-defined control is created.

	Footer ASCX control
	A footer panel (ASCX file) is created.

	Header ASCX control
	A header panel (ASCX file) is created.

	Menu ASCX control
	A menu panel (ASCX file) is created.

	Pagination ASCX control
	A pagination panel (ASCX file) is created.

	Date Pagination ASCX control
	A date pagination panel (ASCX file) is created.

	
	

	Pop-up CSS class
	To change appearance of the modal pop-up for this page change width, height or other attributes in the CSS class specified. You can create new CSS class for this page only.

	Smooth panel update
	Specifies whether to generate Ajax-based panel update code for table and record controls.

	UpdatePanel custom properties
	Additional user-defined properties passed through to the generated ASP.NET controls.

[bookmark: _Ref251752522][bookmark: _Toc411929892][bookmark: _Toc412567727]
[bookmark: _Toc414871928]Configuring Master Pages
Applications built with Iron Speed Designer use one or more .NET master pages. Master pages provide a way to provide general page layout on an application-wide basis. Master pages typically contain elements across many or all pages, such as the page header, the application menus, and the page footer.
Not all pages in your application use the same master page. For example, the majority of application pages may use HorizontalMenu.master or VerticalMenu.master, but the printable pages may use Print.master because they do not include the navigation menus.
Changing a page’s master page
You can change a page’s master page assignment and use any master page of your choosing, including master pages that were not built with Iron Speed Designer. This is useful if your organization has a corporate standard master page they wish to enforce across all applications.
Step 1: In the Application Explorer, select the page where you want to change the master page assignment.
Step 2: Select any cell in the page.
Step 3: Select the Master page in the Page section of the Property Sheet.
Step 4: Select a different master page via the dialog.
 [image:]

	Default master page
	A master page to be used when the page is opened directly on a browser, redirected through menu click, or opened by a redirect Button with Button Action to be “Redirect to a specific URL.”

	Modal Pop-up Master Page
	A master page to be used when the page is opened by a redirect Button with Button Action, “Navigate a specific URL within a modal pop-up.”

	New Window-Pop-up master page
	A master page to be used when the page is opened by a redirect Button with Button Action, “Navigate a specific URL within a new window.”

Step 5: Build and run your application. Your page will now use the newly selected master page.

[bookmark: _Ref412224170][bookmark: _Toc414871929]Queries Properties
The Queries section lists all data sources used on the page. Each data source has a unique name and is associated with a specific database query. The data source (query) used to populate the selected control is marked with an asterisk and listed first in the list of queries.
[bookmark: _Ref412224172][bookmark: _Toc414871930]Styles Properties
The Styles section displays all attributes related to the selected cell, row and table. This is where you assign new CSS classes or styles to the cell, row or table.
	Property
	Description

	Cell
	<td> tag attributes for the HTML table cell.

	Row
	<tr> tag attributes for the HTML table row.

	Table
	<table> tag attributes for the HTML table.

[bookmark: _Ref411345107][bookmark: _Toc414871931].NET Control Properties
Different controls have different set of standard ASP .NET properties. Most common and useful properties are listed below. For more details refer to MSDN documentation.
[bookmark: _Ref256159127]Accessibility properties (ASP.NET)
	Property
	Description

	TabIndex
	Specifies the numeric sequence order for tabbing between fields. ‘1’ is the first field displayed, ‘2’ is the second, and so on. You can set any numeric number you wish to assign to the TabIndex property for any control. In this way, you can define the TabIndex property for all fields in a record control or table control.
	Applies To
	Text Box
Dropdown List
List Box
Radio Button List
Button

Appearance Properties (ASP.NET)
The ASP.NET controls have a wide variety of properties that can be used to govern the controls’ behaviors. Some of the most common are described below.
	Property
	Description

	Columns
	Specifies the screen width of the text box, in characters, for text box controls. This setting governs only the display width of the field, not the number of bytes that the underlying database field can accommodate. Text box columns pertain primarily to string-based field validation types.
The number of characters displayed for the field can be set globally via the “Text box columns” setting in the Databases tab. In this case, leave “Text box columns” setting blank in the field’s Property Sheet.
The maximum number of characters which can be entered into the text box control is governed by the “Text box columns” setting on the Databases tab (in HTML terms, its “maxlength” attribute).
	Applies To
	Text Box

	CssClass
	This property is created by the Application Wizard and not set directly. It is generally set to “Filter_Input”.
	Applies To
	Text Box
Dropdown List
Listbox
Radio Button List
File Upload

	ImageUrl
	The URL of the image to be displayed.
· Image URLs that are file names are assumed to reside in the same run-time directory as the page being bound.
· Image URLs that are relative will be relative to their page's corresponding run-time directory, not the app's directory.
· Fully qualified URLs must begin with http:// or https://.
· URLs must not contain backslashes; please use forward slashes.
Example:
Binding an Image tag in MyApp\Shared\test.aspx to "image1.gif" will create an effective reference to MyApp\Shared\image1.gif.
Binding this same image to "../Images/image2.gif" will create an effective reference to MyApp\Images\image2.gif.

	Rows
	Specifies the screen height, in rows, for List box filters.

	Text
	The text to display. The text may contain HTML tags, which will be passed through to the page and rendered in the application user’s browser.
Resource File Key
You can also dynamically fetch a text string from your application’s resource file (RESX) at application run-time by specifying a Resource Key. This is useful in multi-language applications that have multiple resource files, one for each language. This permits easy application localization by editing your application’s resource file instead of the application itself. Specify the Resource Key in curly braces, e.g.:
	{Txt:MyTextString}
Default Label
You can either specify a text string directly or you can specify a variable of the form:
	%ISD_DEFAULT%<TABLE NAME>%<FIELD NAME>
Example:
	%ISD_DEFAULT%Products%ProductName
This variable specifies that the text label is the default label specified in the Databases tab for the ProductName field in the Products table.
	Applies To
	Text Box

Behavior Properties (ASP.NET)
	Property
	Description

	AutoPostBack
	
	True
	Automatically post back to the server application when the selected value is changed. For example, when changing the selected value in a dropdown list filter, the associated table control is automatically updated with the new filter value applied.

	False
	Do not post back to the server application when the selected value is changed. This requires the user to click a button or link to initiate the postback, and is typically used in situations where application users must select multiple filter values before the associated table control data is updated.

The default behavior for dropdown filters created by Iron Speed Designer is to postback an event immediately when a new selection is made. This sometimes becomes inconvenient when there are multiple filters and the end users would prefer to select from multiple filters first, and then press a Go button to begin the process of filtering.
If you have a “Go” button to start the filtering process (AutoPostBack = False), your application must instruct the table control to update itself when the user presses the Go button. However, instead of notifying the table control, it’s better to notify the filter control(s) and let it (them) forward the message to the table control. This ensures that the table control gets notified by the filter control rather than from the button control.
See Turning off AutoPostBack on filters for details.
	Applies To
	Dropdown list

	CausesValidation
	Specifies whether the data input on the page should be validated.
	True
	The data input on the page is validated when the button or link is clicked.

	False
	The data input on the page is not validated when the button or link is clicked.

	Applies To
	Image Button
Link Button
Push Button

	CommandArgument
	CommandArgument supplements the CommandName property. The syntax and affects of individual arguments vary depending on various factors, including the URL / Command Name value, the button consumers' properties, table schemas, etc.
	DeleteOnUpdate
	This argument is typically used when the Command Name is “DeleteRecord”, generally for the “Delete” button within rows in Edit Table pages. The selected record is hidden immediately, but not deleted from the database until / unless the consuming Table Control’s data is saved.

	Applies To
	Button controls

	CommandName
	The particular command to execute upon button click.
	AddRecord
	Add a new record to the database. Processing does not wait until a final “Submit” or “OK” button is clicked.

	Custom
	You can enter any command of your own.

	DeleteRecord
	Delete the selected record panel. Based on the CommandArgument, the processing commits immediately in the database or waits until a final “Submit” or “OK” button is clicked.

	ExpandCollapseRow
	The row is expanded or collapsed.
See the RowDisplayAction property for more details.

	ExportData
	Export data from the associated table. A file selection dialog is displayed when an Export Data button is clicked, prompting the application user for a file name into which the data is exported.

	GotoNext
	Go to the next page in the table. The associated database query is executed and the next page of data is returned from the database and displayed in the associated table.

	GotoPrevious
	Go to the previous page in the table. The associated database query is executed and the previous page of data is returned from the database and displayed in the associated table.

	LogOut
	Sign out of the application. The application user is logged out.

	Redirect
	A new page, specified by the URL, is displayed.

	ResetData
	Clears any data entered on the input form (page). Refreshes the records displayed on the table panel by performing a database query.

	ResetFilters
	Resets the filters including the Search, dropdown list box filters and the column sorting on table panels.

	Search
	Perform a search on the database and display the resulting data in a table or record. This operation is normally used for the “Go” button in a search panel or in a filter field panel. The search term is entered into a separate text box field. Similarly the filter criteria are entered into separate text box and dropdown list fields.

	ShowUserStatusLbl
	Displays the signed in user name in the upper tool bar.

	UpdatePanels
	Updates all associated panels to reflect their current data.

	UpdateData
	Any input data on the page is updated in the database.

	Applies To
	Button controls

	EnableViewState
	Indicates that View State is saved for the field. Disabling the View State will improve run-time performance but no data will be retained when the application user moves from page to page.
	True
	View State saving is enabled.

	False
	View State saving is not enabled.

	MaxLength
	Specifies the maximum number of characters (maximum length) that can be entered in a single line text box control. Note: MaxLength works only for single-line and password text boxes; it does not work when TextMode is ‘Multiline’.
	Applies To
	Text Box

	Rows
	Specifies the number of rows when multi-line text box is selected via the TextMode property.
	Applies To
	Text Box

	TextMode
	Specifies whether a password or multi-line text box control is created.
	Password
	Designates the field as a password field. Asterisks are displayed instead of the text content of the field.

	Multiline
	The field is a multi-line field and permits multi-line input.

If you wish a single line text box to be displayed – the most common case – then omit the TextMode property. The default is a single-line text box when the TextMode property is not set.
Password text mode
Iron Speed Designer automatically (1) sets the control’s Text Mode property to Password and (2) sets the field validation type to Password if Iron Speed Designer detects that the underlying database field type is of ‘password’ or has ‘password’ in the field name. Note that the .NET control’s Text Mode property and the Iron Speed Designer field validation type are two separate properties that can be controlled independently in Iron Speed Designer.
When the Password text mode is enabled for the underlying .NET control, the text box will be blank even though there may be underlying data in the database. Also, the control’s value cannot be pre-set. (These are .NET text box control behaviors.) If the application user does not enter a value into the text box, the data remains unchanged in the database when the record is saved. If the application user enters a value into the text box, the new value is stored in the database when the record is saved, overwriting the previous value, if any. (These are behaviors of your application.)
A problem can occur on Edit Record and Edit Table pages if your password field is required, as can arise if your underlying database field requires a value (i.e., is ‘not NULL’). The ‘missing value’ error will be displayed if your user saves the record leaving the password field empty (unchanged), i.e., a new value is not entered into the blank password control). To avoid this, set the displayed field control to ‘not required’ via the Property Sheet so the validation error message is not displayed if your application user leaves the password value unchanged.
To display the actual contents of a password field in the text box, such as on an Edit Record page, set the Text Mode to Single Line. (Note: asterisks may be displayed if the field validation type is also set to Password.)
	Applies To
	Text Box

	ToolTip
	Pop-up help text displayed when an application user moves their mouse over the button.
Resource File Key
You can also dynamically fetch a text string from your application’s resource file (RESX) at application run-time by specifying a Resource Key. This is useful in multi-language applications that have multiple resource files, one for each language. This permits easy application localization by editing your application’s resource file instead of the application itself. Specify the Resource Key in curly braces, e.g.:
{Txt:MyTextString}

	Visible
	
	True
	The field is visible (displayed).

	False
	The field is invisible (not displayed).

	Applies To
	Text Box

[bookmark: _Ref256159997]Layout properties (ASP.NET)
	Property
	Description

	Height
	The height of an image, if you wish to force a particular height.
	Applies To
	Image

	RepeatColumns
	Specifies the number of columns to display when a radio button list is selected. The number of rows displayed depends on the number of values in the underlying data being displayed. Use the RepeatColumns property in conjunction with the RepeatDirection.
	Applies To
	Radio Button List

	RepeatDirection
	Specifies the layout for a radio button list. The number of rows and columns displayed depends on the number of values in the underlying data being displayed.
	Vertical
	Displays the number of rows specified by the RepeatColumns property.

	Horizontal
	Displays the number of columns specified by the RepeatColumns property.

	Applies To
	Radio Button List

	RepeatLayout
	
	Table
	Formats a radio button list nicely, like in a table cell.

You can also use the cellpadding and cellspacing properties to increase or decrease the spacing between the radio button list columns.
	Applies To
	Dropdown List
List Box
Radio Button List

	Width
	Sets the width of the .NET control.
Image controls
Sets the width of an image, if you wish to force a particular width.
	Applies To
	Nearly all .NET controls, including:
Dropdown List
Image
Label
Literal
Text Box

Navigation Properties (ASP.NET)
	Property
	Description

	NavigateURL
	The destination URL displayed when the link is clicked.

	Target
	The name of the destination frame or browser, if a new browser is to be launched. The string can be any string desired. That is, an application can open a window and give it a specific name; if that name is specified as the Target Window, then the output of the hyperlink tag will appear in that window.

Chart, Data, Image, Layout, Map, Misc, Serializer, ViewState
These sections configure standard .NET properties for chart control and some other data bound controls. Refer to the MSDN ASP .NET documentation for details.
Button
For Themed button control the Property Sheet includes Button property group. Themed button is a ASCX control which contains asp:linkButton that could be surrounded with images or simply have specific styles applied depending on the page style. This internal linkButton is exposed via Button property and thus when Themed button is selected Button group is exposed in the Property Sheet. These are standard .NET properties for linkButton. Please refer to .NET documentation for details.

[bookmark: _Ref68496884][bookmark: _Toc74401652][bookmark: _Toc74456401][bookmark: _Toc38781230][bookmark: _Toc46318179][bookmark: _Toc46552544][bookmark: _Toc48382344][bookmark: _Ref48388403][bookmark: _Toc96318875][bookmark: _Toc46318139][bookmark: _Toc46552500][bookmark: _Toc48382314][bookmark: _Ref48383864][bookmark: _Toc49837482][bookmark: _Toc52951685][bookmark: _Ref68351707][bookmark: _Toc46318128][bookmark: _Toc46552486][bookmark: _Ref48393709][bookmark: _Toc49837470][bookmark: _Toc52951676][bookmark: _Ref62895117][bookmark: _Ref64200833][bookmark: _Toc67142102][bookmark: _Toc69643807][bookmark: _Ref70760441][bookmark: _Ref68410205][bookmark: _Toc74401566][bookmark: _Toc74456315][bookmark: _Toc81718415][bookmark: _Ref106175209][bookmark: _Ref106175832][bookmark: _Ref106175894][bookmark: _Toc198556489][bookmark: _Ref227734771][bookmark: _Toc234740108][bookmark: _Toc234834443][bookmark: _Ref256522620][bookmark: _Toc414871932]Custom Button Properties

These custom properties control specific types of controls created by Iron Speed Designer. Generally you should not modify these properties; all configurations should be made using Button Action dialogs.
	Property
	Description

	Consumers
	Designates a “consumer” of the button event. When the button is activated, the application creates an “event” that informs other controls that the button has been clicked. This allows other controls to take action based on the event. This property designates which component, if any, receives the event.
	None
	There is no consumer of this event.

	Page
	The page consumes this event, indicating that all records on the page should be updated.

	Parent
	The parent control consumes this event.

	ParentRecord
	The parent record consumes this event.

	ParentTable
	The parent table consumes this event.

	Control name
	The actual control bound to the button, e.g.: CategoriesTableControl.

	ControlToUpdate
	Specifies the name of the dropdown list control updated by this button.
	Applies To
	Button
ImageButton
LinkButton

	FieldValue
	Specifies the name of the database field that populates the dropdown list updated by the Quick Add button.
	Applies To
	Button
ImageButton
LinkButton

	RedirectArgument
	URL arguments, if any, to pass to the page being displayed. There are several special arguments described in Substitution variables.

	RedirectURL
	The URL of the page to be displayed when the button is clicked. There are several special arguments:
	Back
	This argument can be used with the special RedirectArgument "updatedata", which is related to page history (Back key) handling.
You can modify a page’s OK or Cancel button to return "Back" to a previous page with fresh data by adding a RedirectArgument of "updatedata". This causes the previous page to load with fresh data, while maintaining settings (such as page size displayed, sorting, etc).

	RowDisplayAction
	Specifies the row display behavior when the ‘Expand’ button is pressed.
	ExpandSelectedRow
	The selected row is expanded. No other rows are changed.

	ExpandSelectedRowAndCollapseOtherRows
	The selected row is expanded and all other rows are collapsed.

	SendEmail<Number>From
	Specifies the email address to use in the From field of an email. The email address can be specified as a constant or as a substitution variable. If it is a substitution variable, then the email address is taken from a field in the Table or Record control during application run-time. Multiple email addresses should be separated by comas (,).
Email address should take one of these formats:
· A constant
· A substitution variable
· Display name constant <Email address constant>
· Display name constant <Email address substitution variable>
· Display name substitution variable <Email address constant>
· Display name substitution variable <Email address substitution variable>
Substitution variables have the format:
{ControlName:NoUrlEncode:FV:FieldName}
See Substitution variables for details.
Property numbering starts with 1, must be an integer, and should be sequential. For example, adding three send email actions using the Button Action Wizard creates this sequence of SendEmail<Number>From properties:
SendEmail1From
SendEmail2From
SendEmail3From
If you are adding custom properties through the Property Sheet, make sure the properties are numbered sequentially. If numbering is not sequential, then send email code will be created only for those send email actions that are numbered sequentially. For example, if you have added three send email actions and used numbers 1, 3, 4, send email code will be created only for the first send email action.
	Numbering
	Send email code is created for

	1, 2, 3, 6
	1, 2, 3

	2, 5, 8
	None

The text of all send email related properties is stored as encoded (using URL encoding). This allows you to use different special characters (for example XML code). We strongly recommend using the Button Action Wizard to add send email-related properties. This helps avoid unnecessary problems and assures correct operation of your application.

	SendEmail<Number>To
SendEmail<Number>CC
SendEmail<Number>BCC
	Specifies the email address to use in the To, CC, and BCC fields of an email.
See SendEmail<Number>From for numbering details.

	SendEmail<Number>Subject
	Specifies the subject of the email.
See SendEmail<Number>From for numbering details.

	SendEmail<Number>ContentURL
	Specifies the URL of the web page used as content of the email.
See SendEmail<Number>From for numbering details.

	SendEmail<Number>Content
	Specifies the text used as content of the email.
See SendEmail<Number>From for numbering details.

	SendEmail<Number>EmbedImages
	Supplements the SendEmail<Number>ContentURL property.
	true
	Images are attached to the email.

	false
	Images and style sheets are referenced by fully qualified URLs

See SendEmail<Number>From for numbering details.

	SendEmail<Number>ForRecord
	This property is used to create send email actions.
	current
	Substitution variables are evaluated for the current record of the associated Record control or for first selected record in the associated Table control.

	selected
	Substitution variables are evaluated for all selected records in the associated Table control. A separate email is sent for each selected record.

	all
	Substitution variables are evaluated for all records in the associated Table control. A separate email is sent for each record.

See SendEmail<Number>From for numbering details.

Properties of buttons within ASCX controls
Properties are declared differently for a Text button (called a ‘theme button’) and an Image button. For example the CommandName property for a text button is Button-CommandName whereas it is just CommanName for an Image button.
The reason is that theme buttons are usually ASCX controls that are included within a page (ASPX). A button component creates a reusable panel and is based on a layout that you can specify. The PushButton, LinkButton and ImageButton are standard HTML buttons. In order to retrieve the property for any ASCX control within a page, it is essential to prepend the name of the ASCX control before the property so that the page is aware it refers to the property of an ASCX control with that name. Image buttons, on the other hand, are simple ASP controls and therefore don’t require us to specify the name of the controls before the properties.
The Button uses several properties to set the values of attributes inside of the Button panel. The properties whose names are prefixed “Button” refer to the attributes within the Button panel. For example, a code generation tag named Button within the Button.html panel is referred by the name Button by the enclosing page or panel. As such, the Button-CausesValidation property refers to the CausesValidation property of the code generation tag named “Button” or “LinkButton” within the ThemeButton.ascx control.

[bookmark: _Ref78016994][bookmark: _Ref215393831][bookmark: _Ref78089725][bookmark: _Ref49777605][bookmark: _Toc49837621][bookmark: _Toc49837817][bookmark: _Ref51748156][bookmark: _Toc53045986][bookmark: _Toc58841521][bookmark: _Toc64442244][bookmark: _Toc74401635][bookmark: _Toc74456384][bookmark: _Ref208146223][bookmark: _Toc49837584][bookmark: _Ref63756191][bookmark: _Ref78088449][bookmark: _Toc38781231][bookmark: _Toc414871933]Using URL Parameters
There are many contexts in which passing data from one page to another via the URL is a convenient means of transferring data.
[image:]
Parameters such as primary and foreign key values can be passed from one page to another through the destination page’s URL. For example, you can create a "wizard" from a New Orders page to a New Order Details page by passing the OrderID of the new Orders record on the URL so that the OrderDetails.OrderID field is automatically set in the New Order Details page.
[bookmark: _Ref104355199]URL query string format
A simple URL with a query string parameter is:
http://OrderManagementSystem/ShowOrder.aspx?ID=10248
In this example, the text string “ID” is specified as the query string parameter in the Property Sheet. The query string parameter “ID” is then used in the page’s URL. The application recognizes “ID” as a valid query string parameter and uses the value assigned to ID in the URL as part of the SQL query.
The receiving page might use the query string parameter as part of a WHERE clause that filters, or limits, the data displayed in a table, e.g.:
Order.OrderID is equal to ID
Permissible query string parameters
The query string parameter can be any alphanumeric string you wish. It does not have to match the database table’s field name or correspond to anything else. Your application will parse the query string, extract the appropriate parameter and value, and perform the record lookup in the appropriate database table.
In use, the query string parameter follows the URL, as does “ID” in this example:
[image:]
Passing data using URL parameters when a button is clicked
URL parameters can be used for passing data from one page to another when a button is clicked. These URLs are specified via the Button Action Wizard in the Property Sheet. For example, when a user clicks the “Show” button on an Table Report page, the the primary key value (ID) of the selected table row entry can be passed to a Show Record page to display the full details of the selected record.
	[image:]

	Pass data between pages using URL parameters, as shown in the Redirect Action Wizard.

To select which URL parameters to pass:
Step 1: In the Layout Editor, select the button control you wish to configure.
Step 2: In the Property Sheet, Button actions, select Redirect and open the Redirect Action Wizard.
Step 3: Configure the URL and associated parameters.
	Options
	Description

	URL
	The URL of the page to be displayed when the button is clicked.
The URL field has this format:
	http://<Page URL>?<Parm1>=<Value1>&<Parm2>=<Value2>
Here’s an example:
	http://AcmeOMS/View-Orders.aspx?OrderID={PK}&Name={FK}
The format of the URL parameters (such as PK in the example above) is:
	[ControlName:][NoUrlEncode:]Type[:Value]
When the URL is consumed by a Record control, the associated record is used at run-time to construct the actual URL containing the specified URL Parameters. When consumed by a Table control, the Table control’s selected record is used.
The URL may include hard-coded arguments as well as parameterized arguments.
[image:]
There are a variety of substitution variables described inSubstitution variables.
The special arguments that may be entered into this field are:
	{0}
{1}
etc.
	Any number of positional arguments can be included in the URL. Numbers enclosed in curly braces indicates that the value should be calculated from the URL Parameters (see below).

	Back
	This argument can be used with the special "updatedata" URL Parameter, which is related to page history (Back key) handling.
You can modify a page’s OK or Cancel button to return "Back" to a previous page with fresh data by adding an "updatedata" URL Parameter. This causes the previous page to load with fresh data, while maintaining settings (such as page size displayed, sorting, etc).

	Close
	Clicking the button will cause it to emit client script during the post back that will close the browser window when the post back's Http Response is sent back to the browser.
Since Iron Speed Designer does not (currently) easily support applications that use multiple browsers in the same session, this feature is currently most useful in conjunction with customization. However, there may be rare situations where a developer might want to use it without customization, such as an application’s sign out button to use the Close URL instead of redirecting to a sign out confirmation page.

	URL Parameters
	The URL parameters, if any, to pass to the page being displayed via the URL. There is a variety of substitution variables described inSubstitution variables. In order to make pages more user-friendly, Iron Speed Designer includes new URL parameter “TabVisible=False” when you select “Navigate a specific URL within a modal pop-up” to hide tabs when page is opened in a modal pop-up. Also if you specify a control to update on the Action step, “SaveAndNewVisible=False” will be included and the Save and New button will not show up on the page opened in modal pop up. If you think the tabs or Save and New button are helpful, you are welcome to remove these URL parameters but note that there are some major limitations:
if you close the window or cancel from it after one or more clicks to Save and New without ever clicking Save, underlying control will not be updated, new records will not be reflected. User will need to manually (F5) refresh a page to see new records Control is updated only when Save button is clicked.
Another important limitation is that only last added record will be added to the dropdown list if it was selected to be updated so if several were added via Save and New button only last will show up in the list after Save was clicked.
Tabs might not fit pop-up window and could require vertical and horizontal scroll.

[bookmark: _Ref413652770]Substitution variables
In the generated code function calls will use substitution variables. The following substitution variable types are available:
	Type
	Value
	Description

	FDV
Reparsable display format
	Database field name
or
Field display name
	FDV returns (converts) the database field value as a string using the field’s display format, as specified by the database field properties, but the string may not be reparsable. The display string may be different than the database field name because you may have selected a different display format.
For example, FDV converts field values to an expanded “display foreign key as” (DFKA) string for DFKA-enabled fields. For most field types, this is the same as FVS if there is no DFKA configured. However, FDV will convert Password values to "*****" and Credit Card Number values to the "masked" format (e.g. "XXXX-XXXX-XXXX-0000").
Example:
	FDV:BirthDate
Returns:
	08+December+48+A.D.+00-00-00-AM
(08 December 48 A.D. 00-00-00-AM, assuming the display format is dd MMMM yy gg HH-mm-ss-tt)
FDV may be prefixed by NoUrlEncode to indicate that the value will not be URL encoded. (E.g., spaces will not be converted to %20.) However, the value will be HTML encoded. (E.g., spaces are converted to %20.)
Example:
	NoUrlEncode:FDV:Birth Date
Returns:
	08%20December%2048%20A.D.%2000-00-00-AM

	FK
	Foreign Key Name
	Returns the foreign key or foreign key ID. The Foreign Key Name is the name of the foreign key either in the database or as a virtual foreign key defined in Iron Speed Designer.
Example: FK:FK_Orders_Customers
FK may be prefixed by NoUrlEncode to indicate that the value will not be URL encoded. (E.g., spaces will not be converted to %20.)
Example: NoUrlEncode:FK_Orders_Customers

	FV
	Database field name
or
Field display name
	Returns (converts) the database field value as a string without using the field’s display format. For example, dates will always be displayed in the web server's default date format regardless of the field’s properties. Value is the database field name (not the name of the code generation tag).
Example:
	FV:BirthDate
Returns:
	12%2f8%2f1948+12%3a00%3a00+AM
	(12/8/1948 12:00:00 AM)
FV may be prefixed by NoUrlEncode to indicate that the value will not be URL encoded. (E.g., slashes will not be converted to %2f.) However, the value will be HTML encoded. (E.g., spaces are converted to %20.)
Example:
	NoUrlEncode:FV:BirthDate
Returns:
	12/8/1948%2012:00:00%20AM

	FVS
Field display format
	Database field name
or
Field display name
	FVS returns (converts) the database field value as a string using the field’s “editable” or “reparsable” string format as specified by the database field properties. This is the same as the FV type, but converted into a string.
Example:
	FVS:BirthDate
Returns:
	08+December+48+A.D.+00-00-00-AM
(08 December 48 A.D. 00-00-00-AM, assuming the display format is dd MMMM yy gg HH-mm-ss-tt)
FVS may be prefixed by NoUrlEncode to indicate that the value will not be URL encoded. (E.g., slashes will not be converted to %2f.) However, the value will be HTML encoded. (E.g., spaces are converted to %20.)
Example:
	NoUrlEncode:FVS:BirthDate
Returns:
	08%20December%2048%20A.D.%2000-00-00-AM

	PageCount
	N/A
	Returns the page count when used with a table control.

	PK or ID
	None
	Returns the record’s primary key.
The “ID” substitution variable constructs a Key object, which is rendered as an XML structure to accommodate composite keys (where the key consists of more than one column).
Virtual foreign keys of database views cannot be used as a URL Parameter using ID. Consider using FV instead.
Note: PK is an alias for the ID type.

	TName
	N/A
	Returns the table name when used with a table control.

Using URL parameters in WHERE clauses
URL parameters can be used when selecting and displaying data in an SQL query. A URL parameter can provide a value that is compared to the record's field value when that record is read at run-time. Based on the comparison of the two, the record is either included in or excluded from the result set. When Iron Speed Designer builds your application, it creates the “addFilter” mechanism that applies the comparison.
Use the Add WHERE Clause dialog in the Query Wizard (Data Sources tab, Edit…) to select the URL parameters to use in the query.
	[image:]
	

Using URL parameters to initialize field values
URL parameters can be used to initialize controls in Actions section of the Property Sheet.
[image:]
[image:]

[bookmark: _Toc414871934]Guidelines for Using HTML in Email
Email isn't the web. Your HTML design might look great in one email program, but chances are when you look at the same work a different email program the results will not be the same.
Some email clients are moving away from full CSS support. As of early 2007, Gmail is the most restrictive as it will ignore all external and embedded style sheets. (It will support inline styles.) If it looks great in Gmail, chances are, it will look great in most other clients. Even with inline styles, there are some restrictions.
Things to do
· Use tables for layout. You can also try <div> tags for positioning and layout, but research shows that tables are more consistently supported. But do very simple layouts, avoiding lots of nested tables.
· Use inline styles liberally in tables. In fact, you'll find you can get the best mileage out of inline styles in <td> tags. That way you are setting up little style regions within each table.
· Avoid background colors in table cells that contain other tables.
Things to avoid
· Do not rely on external (<link rel="stylesheet">) or embedded style sheets (those contained within the <style> tag above the <body> tag). This is the most important thing to avoid.
· Don't use javascript in an email. There's no better way to have your email marked as spam.
Images
· Define background images using background= instead of the inline background-image call. Gmail, among others, will ignore any url() attribute in an inline style. Keep in mind, that if the background image is ignored, the default color will be white. That means white text on black backgrounds will disappear. Stick with text colors that are visible against a white background.
· Don’t use images for important content like calls to action, headlines and links to your web site. Outlook, Gmail and others turn images off until allowed by the user.
· Provide alt text for all images.
· Declare BOTH height AND width parameters for images. Outlook Web Access especially needs this for your table layout to display properly.
About CSS Support in Outlook 2007:
http://www.campaignmonitor.com/blog/archives/2007/01/microsoft_takes_email_design_b.html[image: http://img1.dev.meetupstatic.com/img/clear.gif]
This is a support article about using CSS in Email presentation. GMail strips all CSS out and looks like the new Outlook 2007 does the same thing. All code has to be XHMTL compliant and inline styles can be used but in limited use and must be tested for issues with different email clients.
The preceding article is abstracted from: http://www.meetup.com/fwwebdesign/messages/boards/view/viewthread?thread=3020677
Example emails rendered in selected email clients
The following examples illustrate an emailable page rendered by different web-based email clients:
	Email client
	Fully qualified URLs
	Embedded images

	Outlook 2003
	[image:]
	[image:]

	Gmail
	[image:]
	[image:]

	Mail.com
	[image:]
	[image:]

	Yahoo mail
	[image:]
	[image:]

Note: Gmail does not correctly display pages that have the Smooth Panel Update feature enabled and may appear like this:

You can disable the Smooth Panel Update feature on the page you wish to send. Use the Property Sheet to change the “Smooth panel update” property.

[bookmark: _Ref101357115][bookmark: _Ref109632837][bookmark: _Toc47955594][bookmark: _Ref48476122][bookmark: _Toc49837631][bookmark: _Toc49837826][bookmark: _Toc53045995][bookmark: _Toc58845126][bookmark: _Toc58849997][bookmark: _Ref59436444][bookmark: _Toc64442241][bookmark: _Ref49777988][bookmark: _Toc49837620][bookmark: _Toc49837816][bookmark: _Toc53045985][bookmark: _Toc58841520][bookmark: _Toc74401632][bookmark: _Toc74456381][bookmark: _Ref81659381][bookmark: _Toc414871935]Calling a Custom Function When a Button is Clicked
You can call custom code functions of your own when a button is clicked. The invoked code is typically placed in the associated page’s customizable code-behind class (details about this are found elsewhere in the online help). To “catch” the function call, override the OnApplicationEvent function.
	Group
	Property
	Setting

	Button Actions
	Actions
	Custom

	Appearance
	Text
	Export to PDF

	Behavior
	CausesValidation
	No

	Behavior
	CommandName
	DisplayAsPDF

For example, a button might call a custom function called “ExportToPDF” which is invoked when the button is clicked. The OnApplicationEvent function implements an event handler that is called when the new “Export to PDF” button is clicked. In this example, the DisplayReportAsPDF function connects to the data base, populates the report, and then displays it in the web browser.
Visual Basic .NET:
' This method handles the ApplicationEvent produced by the ExportToPDF button
Public Overrides Sub OnApplicationEvent(ByVal args As BaseClasses.ApplicationEventArgs)

	' Handle the custom "DisplayAsPDF" command, but pass others off to the base class
	If args.EventType = BaseClasses.ApplicationEventArgs.EventTypes.Custom AndAlso _
		args.CustomEventName = "DisplayAsPDF" Then
		'' create the report object and produce the report
		Dim crReportDocument As New ProductsList()
		DisplayReportAsPDF(crReportDocument)
	Else
		' not the custom "DisplayAsPDF" command, pass it on
		MyBase.OnApplicationEvent(args)
	End If
End Sub
[bookmark: _Toc414871936]Calling JavaScript Code When a Button is Clicked
Running JavaScript code when a button is clicked is straightforward with Iron Speed Designer using the custom property mechanism.
Step 1: In the Layout Editor, select the appropriate button control.
Step 2: In the Property Sheet, add a new custom property with the appropriate name and value.
The easiest way to understand this mechanism is by example.
Display a message on the browser window status bar
This example displays a message in the browser window status bar as you mouse over a button.
For Theme Buttons such as Save, OK and Cancel at the end of the page:
	Custom Property
	Value

	Button-HtmlAttributes-onMouseMove
	javascript:window.status='Press to Save Data...';

	Button-HtmlAttributes-onMouseOut
	javascript:window.status=' '

[bookmark: _Toc104274624][bookmark: _Toc104634720][bookmark: _Toc109015912]For Image buttons such as shown in the button bar:
	Group
	Property
	Value

	Events
	onMouseMove
	javascript:window.status='Press to Save Data...';

	Events
	onMouseOut
	javascript:window.status=' '

Display confirmation message for record deletion
You can display a confirmation dialog when the application user clicks a Delete button.
For Theme Buttons such as Save, OK and Cancel at the end of the page:
	Custom Property
	Value

	Button-HtmlAttributes-onClick
	javascript:return confirm("Are you sure?");

	Button-HtmlAttributes-onClientClick
OnClientClick is an alternative to OnClick
	javascript:return confirm("Are you sure?");

For Image buttons such as shown in the button bar:
	Group
	Property
	Value

	Events
	onClick
	javascript:return confirm("Are you sure?");

	Events
	onClientClick
OnClientClick is an alternative to OnClick
	javascript:return confirm("Are you sure?");

Prompt when a button is clicked
This example displays a message in the browser window status bar as you mouse over a button a displays a confirmation dialog when the button is clicked.
For Theme Buttons such as Save, OK and Cancel at the end of the page:
	Custom Property
	Value

	Button-HtmlAttributes-onClick
	javascript:return confirm("Are you sure?");

	Button-HtmlAttributes-onMouseMove
	javascript:window.status='Press to Close...';

	Button-HtmlAttributes-onMouseOut
	javascript:window.status=' '

For Image buttons such as shown in the button bar:
	Group
	Property
	Value

	Events
	onClick
	javascript:return confirm("Are you sure?");

	Events
	onMouseMove
	javascript:window.status='Press to Close...';

	Events
	onMouseOut
	javascript:window.status=' '

Caveats
Ensure that JavaScript is enabled in your web browser.
[bookmark: _Ref411356124][bookmark: _Toc414871937]Code Generation Tags
Code generation tags instruct Iron Speed Designer what databound controls to create. Code generation tags specify the database-connected tables, fields, filters, and other controls you want in your application. They are stored in the Layout Editor and you can wrap them in additional text, HTML, and ASP.NET controls via the HTML Editor. When you drag a control from the Toolbox onto your page in Layout Editor, you are very often adding a code generation tag.
	[image:]

	Code generation tags instruct Iron Speed Designer which components to create.

When you build your application, Iron Speed Designer replaces the code generation tags with ASP.NET controls to produce ready-to-run ASPX pages. The code generation tags are stripped replaced by corresponding web controls, code-behind logic, and transaction management code. This also means that the code generation tags have no run-time effect on your application because they are not present in the application.
Most individual databound controls represented by code generation tags are bound to underlying data sources. A control is bound by specifying the databases, tables, and fields to be connected to the component via the Property Sheet. Iron Speed Designer uses component properties and table schemas to create your application’s code and user interface.
	[image:]
	Individual components on the page, represented by code generation tags, are bound to the underlying database tables and fields. This allows Iron Speed Designer to create specific code and SQL queries corresponding to the underlying database tables.

Each different code generation tag in Iron Speed Designer has its own set of properties because different components have different parameters. For example, an Image control (Image code generation tag) is set to the URL, file name, or database field containing the image to be displayed. In contrast, a Table control (Table code generation tag) is bound to the underlying database table or multi-table join to be displayed, along with the specific columns to be displayed, their order, etc. You have control over virtually every aspect of that component’s behavior via the Property Sheet.
[bookmark: _Toc46552781][bookmark: _Toc47758920]Types of code generation tags
The code generation tags are divided into these groups:
	Field Display Tags
	Record Tags
	Table Tags
	Table Component Tags

	FieldLabel
FieldValue
	Record
	Table
	FieldStatistics
Pagination
TableStatistics

	Filter Tags
	Layout Tags
	Button Tags
	Grouping Tags

	FieldFilter
SearchFilter
	HTML
HyperLink
Image
Label
Literal
Text
	ImageButton
LinkButton
PushButton
	Group
Menu
TabContainer
TabPanel
Use

The specifics of each individual code generation tag are discussed elsewhere in more detail.
How code generation tags work
Iron Speed Designer’s Application Wizard inserts code generation tags into the Layout Editor at locations where databound controls will be placed. Use the Property Sheet to specify various data display settings and other properties. Iron Speed Designer uses these properties to create the page component specified by each code generation tag.
You don’t have to learn how to program SQL. Unlike many scripting languages, code generation tags aren’t SQL queries, so you don’t need learn the SQL language. Iron Speed Designer creates all of the SQL queries for you, using the information gathered about each of the code generation tags, generally from your direct input in Iron Speed Designer.
The code generation tags will be replaced with one or more ASP.NET control tags in the ASPX or ASCX files created by Iron Speed Designer. For example, a GEN:IMAGEBUTTON tag is replaced with ASP.NET control tags to support an action that will be taken when the button is pressed.
Code Generation tag:
<GEN:ImageButton Name=“PlaceOrder”/>
ASP.NET control tag:
<BaseClasses:ImageButton runat="server" id="MyImageButton" CausesValidation="True"
			CommandName="Redirect"
			Consumers="None"
			ImageURL="/images/PlaceOrder.gif"
			RedirectURL="/Pages/ConfirmOrder.aspx"
			ToolTip="Press this button to place your order.">
</BaseClasses:ImageButton>
Some code generation tags specify complex layout and functionality. For example, a GEN:FieldValue tag is used for editing a database field value. Iron Speed Designer automatically replaces this tag with an ASP.NET text box control and several controls that specify the validation that is required for this field. For example, the field may be a required field where a RequiredFieldValidator is also created. In this case, the number of ASP.NET control tags created would be more than one tag to replace one code generation tag.
Code Generation tag:
<GEN:FieldValue Name=“LastName” />
ASP.NET control tags:
<BaseClasses:FieldValueTextBox runat="server" id="LastName"
			Field="LastName" Columns="25" CssClass="field_input">
</BaseClasses:FieldValueTextBox>

<BaseClasses:RequiredFieldValidator runat="server" id="LastNameRequiredFieldValidator"
			ControlToValidate="LastName" Enabled="False" ErrorMessage="LastName value is required.">
</BaseClasses:RequiredFieldValidator>

<BaseClasses:TextBoxMaxLengthValidator runat="server" id="LastNameTextBoxMaxLengthValidator"
			ControlToValidate="LastName" ErrorMessage="Value for LastName is too long.">
</BaseClasses:TextBoxMaxLengthValidator>

<BaseClasses:FieldValueValidator runat="server" id="LastNameFieldValueValidator"
			ControlToValidate="LastName" ErrorMessage="Invalid value for LastName.">
</BaseClasses:FieldValueValidator>

<BaseClasses:RecordControlCustomValidator runat="server"
			id="LastNameRecordControlCustomValidator"
			ControlToValidate="LastName" ErrorMessage="Invalid value for LastName.">
</BaseClasses:RecordControlCustomValidator>
Code generation tags that are not bound to valid data sources are ignored when updating ASPX pages and ASCX controls.
[bookmark: _Toc46552777][bookmark: _Toc47758916][bookmark: _Toc38781294]Code generation tag syntax
Code generation tags are based on XML and contain a tag prefix to differentiate them from identically named XML-based tags that you might use. For example, the HTML <BUTTON> tag must be differentiated from the BUTTON code generation tag because they mean two completely different things. To differentiate the code generation tag, we use the code generation tag prefix and specify this tag as <GEN:Button>. The Tag Prefix is also called the XML Namespace.
The tag prefix immediate follows the “<“ or “</” in a tag and ends with “:”. For code generation tags, the tag prefix is “GEN”. For example, to place a simple button on a page, use:
<GEN:Button Name=“EditCustomer”/>
The basic rules of syntax for code generation tags are similar to all other XML-based markup languages:
· All code generation tags must be closed.
· All code generation tags must be well formed.
· All code generation tag attribute values must be enclosed in double quotes.
· The Name attribute is required for most of the code generation tags. The value of the tag’s Name attribute has the following restrictions:
· One word with no spaces
· Must begin with a letter
· Must be unique within a web page – except in repeating layouts such as repeating table rows
Code generation tags can be specified in either of two XML formats show below:
<GEN:Button Name=“EditCustomer”/>
<GEN:Button Name=“EditCustomer>Some arbitrary text</GEN:Button>
One of the most common mistakes made by developers not familiar with XML syntax is to use the first format without the “/” just before the closing “>“.
Correct: <GEN:Button Name=“EditCustomer”/>		note: tag ends with />
Incorrect: <GEN:Button Name=“EditCustomer”>		note: missing / before >
The second format is still valid XML if it is followed at some later point by </GEN:Button>. Otherwise it becomes invalid because the tag is not “closed”. This is also similar to some HTML tags, such as <table> which must be closed by </table>.
The Name attribute is a required attribute for all code generation tags, e.g.:
<GEN:Button Name=“OK” />
Several special names cannot be used as Name values in code generation tags:
· Page
· Self
Note, that you should not change the value of the Name attribute directly in the HTML Editor, instead use (ID) property in the Property Sheet:
[image:]

[bookmark: _Toc46318130][bookmark: _Toc46552488][bookmark: _Ref48393713][bookmark: _Toc49837472][bookmark: _Toc52951678][bookmark: _Ref62895121][bookmark: _Ref64200835][bookmark: _Toc67142103][bookmark: _Toc69643808][bookmark: _Ref70760599][bookmark: _Toc74401567][bookmark: _Toc74456316][bookmark: _Toc81718416][bookmark: _Ref106175211][bookmark: _Toc198556492][bookmark: _Ref70760461]Field Display Tags

FieldValue Tag
FieldLabel Tag
FieldStatistic Tag
Record Tag
Layout Tags
Layout tags display free form content on the page. You can specify the content in the Property Sheet. There are two cases where it might be useful to use layout tags:
1. Developer specified content: In some cases, the content is not known at the time the pages are designed, such as the current date or the name of your client company in a copyright notice. In this case, you can set the content in the Property Sheet.
2. Programming control: Static text in your Web page cannot be accessed or changed programmatically. To programmatically change the contents of the page or hide some controls, the contents must be created as ASP.NET controls. For example, to personalize a thank you message to your most valued customers, you can access the control and change the message and the visibility of the control programmatically.
HTML Tag
HyperLink Tag
Image Tag
Label Tag
Literal Tag
Text Tag
Table Tags
Table Tag
TabContainer Tag
TabPanel Tag
SearchFilter Tag
Table Component Tags
The Table Component tags create various statistical and pagination control components related to a table.
FieldLabel Tag
FieldStatistic Tag
Literal Tag
Pagination Tag
Table Tag
Button Tags
The Button tags display three button types on a page.
Image Tag
ImageButton Tag
LinkButton Tag
Pagination Tag
PushButton Tag
Filter Tags
The Filter tags create various filters and search control components related to a table.
FieldFilter Tag
SearchFilter Tag
Component Use Tags
The Component Use tag lets you include other reusable components that you may have created. Iron Speed Designer creates some standard components that you can use and you can create your own reusable components.
Menu Tag
Use Tag

[bookmark: _Ref70760600][bookmark: _Toc74401568][bookmark: _Toc74456317][bookmark: _Toc81718417][bookmark: _Toc198556493][bookmark: _Toc234740110][bookmark: _Toc234834445][bookmark: _Toc414871938]A Hello World Example Using the Image Tag
One of the simplest code generation tags is the Image tag. The Image tag displays an image in the web page, and can reference a URL, a file name, or database table. The example below shows an Image code generation tag in the Layout Editor and the resulting page.
<GEN:Image Name=“Logo” />
The Image tag is placed anywhere in the Layout Editor where you wish the image to be displayed. The Image tag has no other parameters than Name, which distinguishes one Image tag from another.
Note: to change a Name parameter you need to change it in the Property Sheet > (ID). Do not change it in HTML Editor
	[image:]
	After setting the Image tag’s URL and updating the application, the resulting page looks like this.

We can build on this example by adding a second Image tag.
This is the first image:
<GEN:Image Name="Logo1" />

This is the second image:
<GEN:Image Name="Logo2" />
Two different Name values distinguish one Image tag from the other. This allows Iron Speed Designer to create separate components for each tag.
	[image:]
	After setting two Image tags to two different URLs and updating the application, the resulting page looks like this.

Use the Property Sheet to configure the Image code generation tag to the actual image.

[bookmark: _Toc74401650][bookmark: _Toc74456399][bookmark: _Ref81716699][bookmark: _Ref106177350][bookmark: _Ref114908235][bookmark: _Ref256512764][bookmark: _Ref256522629][bookmark: _Toc414871939]Code Generation Tag Properties
Nearly every component has properties you can set in the Property Sheet. Some properties govern how Iron Speed Designer creates specific components. Others are ASP.NET component properties that are inserted as part of the ASP.NET components.
Properties and their values are physically stored in your application’s properties files for the specific component.
Terminology definitions
The terms Property and Attribute are used extensively in the .NET documentation, but are not clearly defined in an easy to find place. Here are the definitions:
A server control's Properties are the things listed as Properties in the .NET documentation for the control class. Properties can be set declaratively in the server control's tag by specifying an attribute name/value pair within the control's start tag. Any attribute name / value pair within the control's start tag with a name that doesn't match one of the control's properties is an Attribute, and is "passed through" into the control's Attributes collection. Most controls render their Attributes inside the HTML tag rendered by the control.
For example, Button controls have a CausesValidation property, but not an OnClick property. However, either "CausesValidation=True" or "OnClick='javascript:...'" will cause the button to render an HTML tag with an OnClick attribute. (Note that in the previous example, setting both CausesValidation=True and OnClick will cause a conflict.) Also note that certain controls, like Literal, do not allow Attributes; they only allow Properties.
[bookmark: _Ref106000675][bookmark: _Ref106177417]Setting ASP.NET control properties
Every code generation tag is replaced during generation with one or more ASP.NET server control tags. For example, GEN:FieldValue is replaced by different ASP.NET controls depending on the control type. Every type of ASP.NET server control supports a different set of run-time properties. Most, but not all, of these properties can be initialized via the Property Sheet. The list of valid properties is determined by the server control class and its super classes and interfaces. These ASP.NET control properties are described in the .NET documentation for each control class. Also, the valid values for each property can depend on the control type, the property, and in some cases the values of other properties for that control instance.
Some code generation tags also produce additional ASP.NET controls. For example, GEN:FieldValue creates zero to five validator control tags in addition to the primary control, depending on the code generation tag's properties. Each of these non-primary tags also supports a set of run-time properties as described above. These can also be set via the Property Sheet, but the property Name must be prefixed with the ID of the secondary tag in order to alert Iron Speed Designer that the property is for a non-primary tag rather than the primary tag.
Custom properties
You can create your own custom properties and set them directly in the Property Sheet. Properties are not limited to just those used in controls created by Iron Speed Designer.
	[image:]

	Custom Properties in the Property Sheet.

[bookmark: _Ref106000676]Property Behavior at Run-Time
Most ASP.NET controls are replaced by your web server at run-time with one or more HTML tags in the actual HTTP response sent to the client. The type and syntax of the HTML tag(s) is determined at run-time by the control's properties and the client's browser type. Most of these controls will "pass through" any attributes that do not correspond to one of their control properties as attributes of the HTML tag. For example, the GEN:Label code generation tag corresponds to a Label server control. Label server controls do not have an "OnClick" property, but if you add something like
OnClick="'alert('Hello.');"
as an attribute of the Label's tag, it will render as something like

Therefore, each server control supports an additional set of properties that correspond to the HTML attributes of the HTML tags they render as during run-time.
Since most of the server control properties affect the HTML tags and/or attributes rendered by the control, it is possible for an HTML property to conflict with a server control property. For example, if a DropDownList's AutoPostBack property equals True, it will render as an "OnChange" attribute of the HTML <select> tag rendered at run-time. If the DropDownList also had an HTML property named "OnChange" (e.g. OnChange="return false;"), the two would conflict and problems may occur. Therefore, the list of valid properties, the valid values of each of them, and the effect of the valid values often varies depending on the presence and values of other properties.
The presence and/or value of specific properties could, in some cases, be affected by code customization (making the attributes be ignored, have a different effect, etc.) and/or affect code customization (making certain customizations impossible, harder, or work differently). This case is rare, though.
Examples
Example: Add Tool Tips to Controls
Example: Boldface a FieldValue Literal Tag

[bookmark: _Ref110246327][bookmark: _Toc414871940]Example: Add Tool Tips to Controls
The ToolTip property is a .NET property defined at the WebControls level, which means that many controls support them. Iron Speed Designer places them in your application’s ASPX pages. See:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolswebcontrolclasstooltiptopic.asp
Button controls
For button controls, there is a "Tool tip" field on the Property Sheet.
	Property
	Value

	Button-ToolTip
	Click here to win!

Other controls
For other controls, set the"ToolTip" property in the Property Sheet. Do not use quote marks around the text.
	Group
	Property
	Value

	Behavior
	ToolTip
	Enter a freight value

These code generation tags and their corresponding .NET controls have tool tips:
	Code generation tag
	Corresponding .NET control

	FieldFilter
FieldValue
	Dropdown list

	FieldValue
	Radio button list

	FieldValue
	List box

	FieldFilter
FieldValue
	Text box

	FieldLabel
FieldValue
	Label

	FieldLabel
	Hyperlink

	FieldValue
(Image Button, Link Button, Push Button)
	Button

	FieldValue
	Check box

Controls without tool tips
Not all .NET controls have a ToolTip property, and the property mechanism will pass anything you enter through to the ASPX page, whether it makes sense or not. If the underlying control supports the property (ToolTip), then it will function properly. If not, then it's likely you'll get an ‘Internal Server Error’. For example, .NET literal controls don't have a ToolTip property, so you'll get an Internal Server Error when displaying a page containing a literal with a ToolTip properly.
These .NET controls are known not to support tool tips:
	Code generation tag
	Corresponding .NET control

	FieldValue
	Literal

[bookmark: _Ref106001059][bookmark: _Toc414871941]Example: Boldface a FieldValue Literal Tag
Set the following properties in the Property Sheet for a FieldValue tag:
	Group
	Property
	Value

	Control
	Control type
	Label
This is the tag’s control type.

	Appearance
	Font-Bold
	True

[bookmark: _Ref106000678][bookmark: _Toc414871942]Overriding Properties
Properties cannot be "overridden" directly from the Property Sheet. Any property name containing a dash is considered an override. For example, "OnClick" is an allowed property because it sets an attribute, and "Button-Text" is allowed because it overrides a Property, but "Button-OnClick" is not permitted because it overrides an Attribute.
However, a special set of "wrapper" Properties (not Attributes) can be overridden. Overriding a wrapper Property is equivalent at run-time to overriding the Attribute itself.
Since only public Properties (not Attributes) of a control can be overridden across User Control (panel) boundaries, a control's "wrapped" Attributes can be set declaratively (using properties), even across User Control (panel) boundaries. For example, a specific page’s Menu's MenuItem's LinkButton's "onBlur" Attribute can be overridden by setting a property similar to the following on the Page's Menu component/tag:
<MenuItem tag name>-Button-HtmlAttributes-onBlur
Trying to set the Attribute directly using "<MenuItem tag name>-Button-onBlur" would have no effect on the LinkButton, because LinkButtons do not have a Public Property named "onBlur".
You can customize the behavior and appearance of paneled controls (e.g. Buttons, MenuItems, and Pagination panel contents) from outside the panel without code customization. From the Property Sheet, for example, you can:
· Make a button or hyperlink display a confirmation popup when clicked.
· Make a control display text in Internet Explorer’s status area when the user hovers over the control.
· Add advanced client-side behavior to buttons and other controls by overriding the JavaScript event handler attributes such as onClick, onFocus, OnBlur, onMouseMove, onKeyDown, etc.
Examples
Example: Add a Mouse Over Message to a Button Tag
Example: Add a Print Button to a Web Page
[bookmark: _Ref106001057][bookmark: _Toc414871943]Example: Add a Mouse Over Message to a Button Tag
Set the following properties in the Property Sheet for an Image Button, Link Button, or Push Button control:
	Property
	Value

	Button-HtmlAttributes-onMouseMove
	javascript:window.status=’Hovering...’;

	Button-HtmlAttributes-onMouseOut
	javascript:window.status=“;

After building and running the application, watch the browser’s status bar. You’ll notice the custom message appears when you hover over the button.
Note: The Java Plugin must be installed and running in your system system in order for this example to work properly.

[bookmark: _Ref129511704][bookmark: _Toc414871944]Example: Add a Print Button to a Web Page
Set the following properties in the Property Sheet for an Image Button, Link Button, or Push Button:
	Property
	Value

	Button-HtmlAttributes-onClick
	JavaScript:window.print()

After building and running the application, click your “print” button and your browser’s printer selection dialog will appear.
Note: The Java Plugin must be installed and running in your system system in order for this example to work properly.
[bookmark: _Toc46307912][bookmark: _Toc46552901][bookmark: _Toc47676612][bookmark: _Toc47759040][bookmark: _Ref48479956][bookmark: _Toc53046077][bookmark: _Toc64196232][bookmark: _Toc74401609][bookmark: _Toc74456358][bookmark: _Ref81803051][bookmark: _Ref81727172][bookmark: _Ref81729009][bookmark: _Toc25502399][bookmark: _Toc38781298][bookmark: _Toc46307884][bookmark: _Toc46552783][bookmark: _Toc47676584][bookmark: _Toc47758922][bookmark: _Ref48479016][bookmark: _Toc53046049][bookmark: _Toc64196204][bookmark: _Toc74401581][bookmark: _Toc74456330][bookmark: _Toc414871945]FieldFilter Tag
[bookmark: _Toc46552902][bookmark: _Toc47759041]Purpose
The GEN:FieldFilter tag is used to filter a table of records based on the value of a field. The field filter can be bound to a database field of any type including a date field. Applying a filter to a database table displays a subset of the database sorted and displayed in a particular way. For example, the table control displaying the filtered data could contain a subset of records, such as "products that are in stock", or "customers that have purchased goods greater than $1000". A table control could also contain a subset of the information for each item, such as "product name, description and price", but not the dimensions of the product.
	[image:]
	A dropdown list filter selects an Employee name.

Similarly, the order of the columns is specified in the filtered table control as well. In summary, a filter limits the records displayed, and for each table control, you can control which columns are displayed, what order they are displayed in, how wide each column is, how the data is sorted, and what types of records to display.
The filter type displayed depends on the field type:
	Field Type
	Filter

	Credit Card Exp. Date
	Date filter with one field and a “Go” button.

	Currency
	Numeric filter with one field and a “Go” button.

	Date
	Date filter with one field and a “Go” button.
The calendar date picker will be displayed for a date filter control if the filter is bound to a field whose type is Date and if the Ignore Time option is selected in the Property Sheet. If the Ignore Time checkbox is not selected, then the date picker is not displayed.

	Decimal Number
	Numeric filter with one field and a “Go” button.

	Number
	Numeric filter with one field and a “Go” button.

	Percentage
	Numeric filter with one field and a “Go” button.

	All other fields
	Field selection filter (dropdown combo box). The dropdown filters filter immediately when changed and do not have a Go button

You can specify the Control Type property for the FieldFilter to be a dropdown list or a text box. If a dropdown is specified, the list of current values will be displayed in the dropdown. The current values are all the values that are in the current query including items that are displayed on subsequent pages. If a text box is specified, the application user can type a text value in the text box. You can also specify the operator to use to compare the text value specified in the text box. For example, to search for any names starting with the typed text string, specify the operator as “begins with”.
This tag requires a binding between it and another control, typically the table that it modifies. You must manually hook up the control to the table in the Property Sheet.
The fields displayed in the FieldFilter are not required to be displayed in the table shown to the user.
[bookmark: _Toc46552905][bookmark: _Toc47759044]Examples
<GEN:FieldFilter Name=“StartDate”/>
[bookmark: _Toc104376357][bookmark: _Toc104382226][bookmark: _Ref104621359][bookmark: _Toc234671128][bookmark: _Ref234671778][bookmark: _Toc46552903][bookmark: _Toc47759042]Turning off AutoPostBack on filters
The default behavior for dropdown filters created by Iron Speed Designer is to postback an event immediately when a new selection is made. This sometimes becomes inconvenient when there are multiple filters and the end users would prefer to select from multiple filters first, and then press a Go button to begin the process of filtering.
The following example shows the Show Customers Table page built using the Northwind database. The ‘Go’ button is the CustomersSearchButton next to the search area.
First, turn off the AutoPostBack property for each filter in the table panel. Second, send an Event from the CustomersSearchButton (Go button) whenever it is clicked to each of the filters.
Step 1: Select each of the filters in turn and set these properties in the Property Sheet:
	Group
	Property
	Value

	Behavior
	AutoPostBack
	False

Bind the events for each filter control. In the Custom Properties dialog, add a “Consumers” property and select the table control to which the search filter belongs. If there is only one table control on the page, it will be selected by default.
Step 2: If you have a “Go” button to start the filtering process, your application must instruct the table control to update itself when the user presses the Go button.
	Tab
	Property
	Value

	Button actions
	Actions
	Apply search and filter to

Step 3: Build and run your application.
[bookmark: _Ref113800153]Setting the default time string for date range filters
When using a date range filter on a Table Report page, the default time string used for the filter is 00:00:00 indicating 12 AM. This works well if you are comparing with the “Is greater than or equal to” operator since you want to display all records greater than equal to the date entered by the end user.
For the “Is less than or equal to” operator, you can specify a default time string of 23:59:59 (11:59:59 PM). This allows the end user to enter a value for the To Date filter and retrieve all records that occur on or before the entered date.
Step 1: In Layout Editor, select the date filter control corresponding to the To date.
Step 2: Set this property in the Property Sheet:
	Group
	Property
	Value

	Control
	Time
	“23:59:59”

[bookmark: _Ref81801932][bookmark: _Toc414871946]FieldLabel Tag
[bookmark: _Toc46552789][bookmark: _Toc47758928]Purpose
The GEN:FieldLabel tag places the name of a database field on the created page. Typically this label is the name of the field, though it can be anything you want. Use the Property Sheet to specify the actual field whose label is to be displayed. Use the Databases tab in Iron Speed Designer to change the default field names used.
	[image:]
	The FieldLabel tag displays column headings in a table.

The FieldLabel tag can also be used to sort a column within a table. This control will sort the table when clicked if the “Control type” property is set to “Hyperlink” in the Property Sheet,
[bookmark: _Toc46552792][bookmark: _Toc47758931]Examples
<GEN:FieldLabel Name=“FirstNameLabel” />
[bookmark: _Toc46552790][bookmark: _Toc47758929][bookmark: _Ref81890517]
[bookmark: _Toc46307903][bookmark: _Toc46552864][bookmark: _Toc47676603][bookmark: _Toc47759003][bookmark: _Ref48479889][bookmark: _Toc53046068][bookmark: _Toc64196223][bookmark: _Toc74401600][bookmark: _Toc74456349][bookmark: _Ref129497117][bookmark: _Ref81728750][bookmark: _Toc414871947]FieldStatistic Tag
[bookmark: _Toc46552865][bookmark: _Toc47759004]Purpose
The GEN:FieldStatistic tag is used within a GEN:Table tag to display summary information about a field from a database. For example, this tag can be used to display the total amount of all of the items in an order. The tag can also display the total just for the records displayed on the current page. Configure the desired action in the Property Sheet.
	[image:]
	The FieldStatistic tag sums columns in a table.

To display a count of records returned by the current query, you can use GEN:Pagination tag. See Pagination Tag for details.
Formatting page and grand totals
Specify the formatting of a page or grand total via the Databases tab. This formatting is global across all pages and cannot be set on an individual field within a panel. Customizing display formatting for an individual field (displayed in a table) does not control the formatting of the page or grand total.
[bookmark: _Toc46552866][bookmark: _Toc47759005][bookmark: _Ref81890551]
[bookmark: _Ref81801931][bookmark: _Ref81803369][bookmark: _Ref129497321][bookmark: _Toc414871948]FieldValue Tag
[bookmark: _Toc46552784][bookmark: _Toc47758923]Purpose
The GEN:FieldValue tag places the value of a database field on the page. Use the Property Sheet to specify the actual field whose value is to be displayed.
	[image:]
	The FieldValue tag displays field values from a database record. These controls can display data as well as input data.

The FieldValue tag can be used either by itself, within a Record tag or within a Table tag. If the FieldValue tag is used by itself, the page will incorporate each FieldValue within an ASP.NET control tag for a record. To optimize the application, you can enclose the FieldValue code generation tag within a Record code generation tag. Enclosing the FieldValue tag within a Record tag is faster because the FieldValue tags can inherit properties from the Record tag’s properties.
Creates
The FieldValue code generation tag creates ASP.NET control tags in the ASPX or ASCX file. The specific ASP.NET control tags created depend on the field value type (e.g., text, image). The primary ASP.NET control tag may be followed by some validator control tags (e.g., RequiredFieldValidator).
[bookmark: _Toc46552787][bookmark: _Toc47758926][bookmark: _Toc46552785][bookmark: _Toc47758924]Examples
<GEN:FieldValue Name=“FirstName”/>
[bookmark: _Ref257024540]TextFormat property
The TextFormat property may include additional text before or after the database value, any HTML tags such as font, bold or underline, and hyperlinks. The {0} substitution variable may be used in the text to include the database value. {0} is the .NET String.Format method’s formatting specifier, and you may use any format supported by the String.Format method. The substitution variable can be used any number of times in the TextFormat property.
	Purpose
	Example TextFormat value

	Specify a prefix or suffix
	Phone: {0}
{0} (fax)

	Format values with color, bold and underline
	<u>{0}</u>

	Mailto hyperlink
	{0}

	Hyperlink a database field
	Click Here
{0}

When used with long text fields, these properties also must be set to display the text value correctly.
	Property
	Setting

	HTML encode value
	False

	Pop ups
	False

	Maximum display length
	An integer value greather than the length of the text so that all text including embedded HTML tags is displayed

	Display threshold
	A large integer value

[bookmark: _Ref222059097]Handling rich text display – text display is truncated
When displaying fields as ‘rich text’ it is common for records with smaller amounts of text to be displayed as rich text and for records with larger amounts text to be truncated and displayed in the browser font because there isn’t sufficient room to display them as rich text. This can lead to a situation where the fonts in certain table cells differ markedly. Most likely your field is set to show text as Default, allowing the Application Generation Options to decide how to display the text. If set to display text as ‘Rich text’ and the threshold is low enough that this field qualifies to use rich text, then any cell in this column where text fits completely will be shown as a rich text; any cell where the text length exceeds the cell width will be truncated and displayed in the default browser font.
To show all text using the same font, you can do one of the following:
· Increase the cell size in the Application Generation Options to fit the entire text into the cell. While this will enlarge many table rows, all text will be displayed as rich text.
· Set the Application Generation Options to show text as 'HTML source' and rebuild the application. The text will be displayed as regular text and not as rich text. However, embedded HTML tags in the rich text will be displayed as raw HTML tags and not rendered.
· Set the particular field to show as ‘HTML source’ in the Properties for the field. The text will be displayed as regular text and not as rich text.
· Increase the size of the “Maximum display length” property to exceed the length of the contents stored in the field or the length of the database field itself. See FieldValue Tag for details.
· Don't use the rich text editor option (FCKEditor) to enter text. Use the ASP.NET multi-line text control instead. You can choose between the two either globally via the Application Generation Options dialog or on a field-by-field basis via the Property Sheet. Of course, with this option you won't have any HTML text formatting either.
· Write a code customization that strips out the embedded HTML for display purposes. All text, regardless of length will be displayed in the default browser font.
[bookmark: _Toc46318187][bookmark: _Toc46552552][bookmark: _Ref48394281][bookmark: _Toc49837552][bookmark: _Toc52951743][bookmark: _Toc64442216][bookmark: _Toc74401622][bookmark: _Toc74456371][bookmark: _Ref78095433][bookmark: _Toc38781299][bookmark: _Toc46307885][bookmark: _Toc46552788][bookmark: _Toc47676585][bookmark: _Toc47758927][bookmark: _Ref48479020][bookmark: _Toc53046050][bookmark: _Toc64196205][bookmark: _Toc74401582][bookmark: _Toc74456331][bookmark: _Toc25502396]File Upload type restrictions on uploading multiple files
File Upload controls have certain security limitations imposed by browsers that prevent them from working in certain situations such as in a table. Specifically, file upload controls cannot maintain their value in case the page is posted back from the server for any reason. This is specifically designed to prevent website developers from retrieving files from an end user’s computer by pre-populating the file upload control with a file path.
Without this limitation, a website developer can place tens or hundreds of hidden file upload controls on a page and pre-populate it with the file paths of a number of files on an end user’s system. When the unsuspecting user presses a button to accomplish something simple, the website retrieves all of the files from the end user’s computer.
In the context of Iron Speed Designer applications, this means that in case of an error, or in case where the user presses an Add button to add another row to a detail table containing rows of file upload controls, the previous file path the end user may have specified is no longer maintained. The user will have to re-enter the file name each time when the page is retrieved from the server.
A solution to this problem is to pre-create multiple rows with file upload controls. A similar solution is provided on the Iron Speed technical support website. When a case is being entered, there are three pre-created rows to upload up to three files. A Code Customization Wizard code example also shows how to pre-create rows.
[bookmark: _Ref68496891][bookmark: _Toc74401657][bookmark: _Toc74456406]
[bookmark: _Toc46307889][bookmark: _Toc46552800][bookmark: _Toc47676589][bookmark: _Toc47758939][bookmark: _Ref48479064][bookmark: _Toc53046054][bookmark: _Toc64196209][bookmark: _Toc74401586][bookmark: _Toc74456335][bookmark: _Ref81801933][bookmark: _Toc38781300][bookmark: _Toc414871949]HTML Tag
[bookmark: _Toc46552801][bookmark: _Toc47758940]Purpose
The GEN:HTML code generation tag places any HTML content specified in the Property Sheet on the page. When the ASPX page or ASCX control is displayed, the ASP.NET control for this tag will render the HTML content in the page.
	[image:]
	Some displayed HTML.

If code generation tags are placed in the HTML content, they will not be recognized by Iron Speed Designer. Similarly, ASP.NET tags placed in the content will not be executed.
The HTML content can contain any valid JavaScript code or any strings enclosed in quotes.
[bookmark: _Toc46552804][bookmark: _Toc47758943]Examples
<GEN:HTML Name=“FooterBlock” />
[bookmark: _Ref81890671]
[bookmark: _Toc46307890][bookmark: _Toc46552805][bookmark: _Toc47676590][bookmark: _Toc47758944][bookmark: _Ref48479065][bookmark: _Toc53046055][bookmark: _Toc64196210][bookmark: _Toc74401587][bookmark: _Toc74456336][bookmark: _Ref129497492][bookmark: _Toc414871950]HyperLink Tag
[bookmark: _Toc46552806][bookmark: _Toc47758945]Purpose
The HyperLink code generation tag places a hyperlink on the page that the application user can click to go to another web page. When the ASPX page or ASCX control is displayed, the server-side control for this tag will return the HyperLink code specified in the Property Sheet. Note, however, the GEN:Hyperlink tag is not data-bound, so it will not display data from your database as a clickable link.
	[image:]
	A hypertext link rendered by Iron Speed Designer.

[bookmark: _Toc46552809][bookmark: _Toc47758948]Examples
<GEN:HyperLink Name=“ClearanceItems”/>
[bookmark: _Toc46552807][bookmark: _Toc47758946][bookmark: _Ref81890715]
[bookmark: _Toc46307891][bookmark: _Toc46552810][bookmark: _Toc47676591][bookmark: _Toc47758949][bookmark: _Ref48479068][bookmark: _Toc53046056][bookmark: _Toc64196211][bookmark: _Toc74401588][bookmark: _Toc74456337][bookmark: _Ref129497533][bookmark: _Toc414871951]Image Tag
[bookmark: _Toc46552811][bookmark: _Toc47758950]Purpose
The Image code generation tag places a static image on the page. The image could be an icon, logo, or any other picture file in the GIF, JPG or other browser-supported format. When the ASPX page or ASCX control is displayed, the server-side control for this tag will return a reference to the image file specified in the Property Sheet.
	[image:]
	An image created by Iron Speed Designer.

Note also:
· Use the ImageButton code generation tag if the image needs to have a clickable link.
· Use the FieldValue code generation tag with the Control Type property set to ‘Image’ if an image is being retrieved from a database table.
[bookmark: _Toc46552814][bookmark: _Toc47758953]Examples
<GEN:Image Name=“Masthead”/>
[bookmark: _Toc46552812][bookmark: _Toc47758951][bookmark: _Ref81890753]
[bookmark: _Toc46307907][bookmark: _Toc46552880][bookmark: _Toc47676607][bookmark: _Toc47759019][bookmark: _Ref48479924][bookmark: _Toc53046072][bookmark: _Toc64196227][bookmark: _Toc74401604][bookmark: _Toc74456353][bookmark: _Ref140920575][bookmark: _Toc46307897][bookmark: _Toc46552838][bookmark: _Toc47676597][bookmark: _Toc47758977][bookmark: _Ref48479808][bookmark: _Toc53046062][bookmark: _Toc64196217][bookmark: _Toc74401594][bookmark: _Toc74456343][bookmark: _Toc46307892][bookmark: _Toc46552815][bookmark: _Toc47676592][bookmark: _Toc47758954][bookmark: _Ref48479071][bookmark: _Toc53046057][bookmark: _Toc64196212][bookmark: _Toc74401589][bookmark: _Toc74456338][bookmark: _Toc414871952]ImageButton Tag
[bookmark: _Toc46552881][bookmark: _Toc47759020]Purpose
[bookmark: OLE_LINK7]The GEN:ImageButton tag displays an image that can be clicked by an application user to redirect the user to a different location. Specify the image in the Property Sheet as a URL relative to the application’s virtual directory or a fully specified URL.
	[image:]
	An image button created by Iron Speed Designer.

The ImageButton tag displays the button as an HTML <input type=image src= ../> tag.
Note: To display an image from a database, use the FieldValue code generation tag described in FieldValue Tag.
[bookmark: _Toc46552884][bookmark: _Toc47759023]Examples
<GEN:ImageButton Name=“EditAddress”/>

[bookmark: _Ref81801934][bookmark: _Toc414871953]Label Tag
[bookmark: _Toc46552816][bookmark: _Toc47758955]Purpose
The Label code generation tag places text on the page. The label will be enclosed in an HTML tag. There is no limitation to the size of the text specified – you are only limited by the memory and resources on your server. When the ASPX page or ASCX control is displayed, the server-side control for this tag returns the label text specified in the Property Sheet.
	[image:]
	Label text.

[bookmark: _Toc46552819][bookmark: _Toc47758958]Examples
<GEN:Label Name=“CopyrightMesage”/>
[bookmark: _Ref81890814]
[bookmark: _Toc46307908][bookmark: _Toc46552885][bookmark: _Toc47676608][bookmark: _Toc47759024][bookmark: _Ref48479925][bookmark: _Toc53046073][bookmark: _Toc64196228][bookmark: _Toc74401605][bookmark: _Toc74456354][bookmark: _Ref140920582][bookmark: _Toc46307893][bookmark: _Toc46552820][bookmark: _Toc47676593][bookmark: _Toc47758959][bookmark: _Ref48479073][bookmark: _Toc53046058][bookmark: _Toc64196213][bookmark: _Toc74401590][bookmark: _Toc74456339][bookmark: _Toc414871954]LinkButton Tag
[bookmark: _Toc46552886][bookmark: _Toc47759025]Purpose
The GEN:LinkButton tag displays a link that can be clicked by an application user to redirect the user to a different location. Specify the text for the link and the URL in the Property Sheet.
The LinkButton tag creates an HTML tag.
	[image:]
	The email address and “Edit” links are examples of the LinkButton tag in action.

Note: To display a link for data from a database, use the GEN:FieldValue code generation tag described in FieldValue Tag.
[bookmark: _Toc46552889][bookmark: _Toc47759028]Examples
<GEN:LinkButton Name=“AboutUsLink”/>

[bookmark: _Ref81801935][bookmark: _Toc414871955]Literal Tag
[bookmark: _Toc46552821][bookmark: _Toc47758960]Purpose
The Literal code generation tag places text on the page. The specified text will be placed on the page without any HTML adornment. There is no limitation to the size of the text specified – you are only limited by the memory and resources on your server. When the ASPX page or ASCX control is displayed, the server-side control for this tag returns the text specified in the Property Sheet.
	[image:]
	Text created by the Literal tag.

[bookmark: _Toc46552824][bookmark: _Toc47758963]Examples
<GEN:Literal Name=“LastName”/>
[bookmark: _Ref81891195]
[bookmark: _Ref257972974][bookmark: _Toc414871956]Menu Tag
Purpose
The GEN:Menu tag creates a menu control for use in navigating between pages.
The easiest way to add a menu control to an application page is by dragging it from the Toolbox onto your page. We recommend you not attempt to configure the menu control by hand.

[bookmark: _Toc46307904][bookmark: _Toc46552869][bookmark: _Toc47676604][bookmark: _Toc47759008][bookmark: _Ref48479891][bookmark: _Toc53046069][bookmark: _Toc64196224][bookmark: _Toc74401601][bookmark: _Toc74456350][bookmark: _Ref129497697][bookmark: _Toc414871957]Pagination Tag
[bookmark: _Toc46552870][bookmark: _Toc47759009]Purpose
The GEN:Pagination tag creates a pagination control for use in a table control. The pagination control itself is composed of a set of related buttons for navigating forward and backward through the tabular data.
	[image:]
	The pagination control is automatically added to any table.

The easiest way to add a pagination control to an application page is by dragging it from the Toolbox > Buttons onto your page. We recommend you not attempt to configure the pagination control by hand.
[bookmark: _Toc46552871][bookmark: _Toc47759010][bookmark: _Ref81891254]
[bookmark: _Toc46307909][bookmark: _Toc46552890][bookmark: _Toc47676609][bookmark: _Toc47759029][bookmark: _Ref48479929][bookmark: _Toc53046074][bookmark: _Toc64196229][bookmark: _Toc74401606][bookmark: _Toc74456355][bookmark: _Ref140920634][bookmark: _Toc414871958]PushButton Tag
[bookmark: _Toc46552891][bookmark: _Toc47759030]Purpose
The GEN:PushButton tag displays a button that can be clicked by an application user to redirect the user to a different location. Specify the button text and the URL in the Property Sheet.
	[image:]
	A push button created by Iron Speed Designer.

The PushButton tag displays the button as an HTML <input type=submit ../> tag.
Note: To display a push button with data from a database, use the GEN:FieldValue code generation tag described in FieldValue Tag.
[bookmark: _Toc46552894][bookmark: _Toc47759033]Examples
<GEN:PushButton Name=“PlaceOrder”/>

[bookmark: _Toc46307887][bookmark: _Toc46552794][bookmark: _Toc47676587][bookmark: _Toc47758933][bookmark: _Ref48479044][bookmark: _Toc53046052][bookmark: _Toc64196207][bookmark: _Toc74401584][bookmark: _Toc74456333][bookmark: _Toc46307919][bookmark: _Toc46552928][bookmark: _Toc47676619][bookmark: _Toc47759067][bookmark: _Ref48480020][bookmark: _Toc53046084][bookmark: _Toc64196240][bookmark: _Toc74401617][bookmark: _Toc74456366][bookmark: _Toc414871959]Record Tag
[bookmark: _Toc46552795][bookmark: _Toc47758934]Purpose
The Record code generation tag groups multiple FieldValue code generation tags so that the code is optimized. The Record tag creates a RecordControl Presentation Layer control tag. The Presentation Layer control tag specifies the selection criteria (query) used to select the record from the database. If there is no enclosing Record tag, each FieldValue will be created with its own enclosing RecordControl Presentation Layer control tag.
	[image:]
	The Record tag, used in conjunction with FieldValue tags, displays multiple fields from the same database record.

FieldValue tags are often grouped within an enclosing Record tag as shown below. The Record tag groups together FieldValue tags that fetch and display data from the same physical record. This is the most convenient way to optimize the code because a single SQL query is created for the Record and associated FieldValue tags. If there is no enclosing Record tag, each FieldValue will be created as a separate control with its own SQL query. You can specify the selection criteria used to select the record in the Query Wizard.
<GEN:Record Name=“Customer”>
	<td><GEN:FieldValue Name="FirstName"/></td>
	<td><GEN:FieldValue Name="LastName"/></td>
	<td><GEN:FieldValue Name="Address"/></td>
	<td><GEN:FieldValue Name="City"/></td>
	<td><GEN:FieldValue Name="State"/></td>
	<td><GEN:FieldValue Name="ZipCode"/></td>
	<td><GEN:FieldValue Name="Country"/></td>
	<td><GEN:FieldValue Name="PhoneNumber"/></td>
</GEN:Record>
You may wonder as to the difference between using FieldValue tags enclosed within a surrounding Record tag and just using plain FieldValue tags without a surrounding Record tag. There are several benefits to using a surrounding Record tag:
1. The enclosed FieldValue components will all use the same record. When FieldValue tags are used separately without an enclosing Record tag, there is no guarantee that each FieldValue will use the same underlying database record. It is possible for each of them to display data from a different database record, making it impossible to synchronize the display of related fields. Using an enclosing Record tag solves this problem.
2. Component configuration is simplified. You can set the Record tag’s “Database field” property to the appropriate database table, saving effort when configuring the enclosed FieldValue tags.
HTML use inside Record tags
There are no restrictions on the HTML included within an enclosing Record tag. HTML and other code generation tags can be intermingled with the FieldValue tags within an enclosing Record tag, as shown in the following example.
<GEN:Record Name=“Customer”>
	Bill To:

	<GEN:FieldValue Name="FirstName"/> <GEN:FieldValue Name="LastName"/>

	<GEN:FieldValue Name="Address"/>

	<GEN:FieldValue Name="City"/>, <GEN:FieldValue Name="State"/>
	<GEN:FieldValue Name="ZipCode"/>

	<GEN:FieldValue Name="Country"/>

	Phone: <GEN:FieldValue Name="PhoneNumber"/>

	FAX: <GEN:FieldValue Name="FAX"/>

</GEN:Record>
After configuring the components and building the application, the following page is displayed.
	[image:]

	FieldValue tags within an enclosing Record tag ensure that each field displayed is from the same record. Any HTML and other code generation tags may be included within an enclosing Record tag.

[bookmark: _Toc46552798][bookmark: _Toc47758937]Examples
<GEN:Record Name=“OrderRecord”>
	<GEN:FieldValue Name=“OrderNumber”/>
	<GEN:FieldValue Name=“OrderDate”>
	<GEN:FieldValue Name=“CustomerName”/>
</GEN:Record>

[bookmark: _Toc46307913][bookmark: _Toc46552906][bookmark: _Toc47676613][bookmark: _Toc47759045][bookmark: _Ref48479959][bookmark: _Toc53046078][bookmark: _Toc64196233][bookmark: _Toc74401610][bookmark: _Toc74456359][bookmark: _Toc46307899][bookmark: _Toc46552848][bookmark: _Toc47676599][bookmark: _Toc47758987][bookmark: _Ref48479812][bookmark: _Toc53046064][bookmark: _Toc64196219][bookmark: _Toc74401596][bookmark: _Toc74456345][bookmark: _Toc46307896][bookmark: _Toc46552831][bookmark: _Toc47676596][bookmark: _Toc47758970][bookmark: _Ref48479804][bookmark: _Toc53046061][bookmark: _Toc64196216][bookmark: _Toc74401593][bookmark: _Toc74456342][bookmark: _Toc414871960]SearchFilter Tag
[bookmark: _Toc46552907][bookmark: _Toc47759046]Purpose
The GEN:SearchFilter tag searches for a text string within a table of records, allowing application users to search data in the displayed table. The resulting table control shows matching records. The search control is added automatically to any Table Report page where one or more fields (table columns) are designated as being searchable.
	[image:]

	The search control is automatically added to any table where one or more data fields have been designated as “searchable” by the application developer.

The SearchFilter tag displays a text box for the application user to enter a value to be searched. The search can be performed against any field in a table using a comparison operator. Only designated columns are searched by the search control.
If the control type is a text box, then the control must be bound to a button. When the button is pressed, the value entered by the application user is searched for within the table.
This tag requires a binding between it and another control, typically the table that it modifies. You must manually connect the control to the table in the Property Sheet.
The fields searched by the SearchFilter are not required to be displayed in the table shown to the user.
Automatic Type Ahead Feature
One of the principal features of the search controls is the Automatic Type Ahead feature. It provides list of suggestions after you type several characters. It fetches list of suggestions by sending request to a web service in the page’s code-behind file which in turn queries the database for a matching set of records.
The automatic type ahead feature has several constraints:
· It is an Enterprise Edition feature.
· This feature can only be used with SearchFilter controls.
· It will not work with Date fields.
· This feature does not work with search controls which are inside a repeater. Also, the feature won’t work in search controls that are in a table’s repeater inside of another table.
· We strongly recommend you index the specific database columns that participate in interactive search. This will significantly improve performance.
Interactive search is controlled by several properties.
[bookmark: _Toc46552910][bookmark: _Toc47759049]Examples
<GEN:SearchFilter Name=“Search”/>
Automatic type ahead feature caveats
The width of the suggestion list box is governed by Columns property for the SearchArea text box. The default value is 50 characters.
Configure properties in Control > Automatic Type Ahead and Control > Search sections, especially pay attention to Search method and Filter operator for the best results.
When search text is typed into a search control, the automatic type ahead feature returns a list of suggestions. The suggestion item’s length may not be equal to the length specified by ‘Columns’ property if the suggestion item contains new line. If a suggested item contains new-line characters before the search text then it displays text after new line. If it contains a new-line after the search text then the text is displayed upto the new line.
For URL fields, the interactive search works only if the complete string ‘http://’ is typed or if the URL is typed without ‘http://’.
[bookmark: _Toc46552908][bookmark: _Toc47759047][bookmark: _Ref81891320]
[bookmark: _Ref198721501][bookmark: _Toc414871961]TabContainer Tag
Purpose
The TabContainer tag identifies a group of related panels that are displayed in a tabbed layout, one panel per tab.
Only GEN:TabPanel tags may be placed within a GEN:TabContainer tag. Any other tags nested within GEN:TabContainer will cause ASPX generation errors.
Example
<GEN:TABCONTAINER NAME="CategoriesTableControlTabContainer">
	<GEN:TABPANEL NAME="TabPanel">
		<GEN:FIELDVALUE NAME="CategoryName" />
	 </GEN:TABPANEL>
	<GEN:TABPANEL NAME="TabPanel1">
		<GEN:FIELDVALUE NAME="Description" />
	</GEN:TABPANEL>
</GEN:TABCONTAINER>

[bookmark: _Ref198721555][bookmark: _Toc414871962]TabPanel Tag
Purpose
The TabPanel tag identifies a single panel within an outer TabContainer tag. In general, there are multiple TabPanel tags contained within an outer TabContainer tag.
Custom properties (Iron Speed Designer)
	Property
	Description

	ParentTabContainer
	Specifies the outer TabContainer control that contains this TabPanel tag.

[bookmark: _Ref81802920][bookmark: _Toc414871963]Table Tag
[bookmark: _Toc46552832][bookmark: _Toc47758971]Purpose
The GEN:Table tag displays data from a database on the page. The data on the table can be retrieved from a database table, a database view or a custom query. You can select the table or the custom query in the Property Sheet.
	[image:]
	The Table tag produces attractive tabular data presentations.

[bookmark: _Toc46552833][bookmark: _Toc47758972]The Table tag functions much like an enclosing Record tag in that it groups together related tags for display within a data grid control. FieldValue tags are often used inside of a surrounding Table tag. The Table tag iterates through the selected data result set, displaying the contents of each successive row in the data grid.
[bookmark: _Toc46318145][bookmark: _Toc46552506][bookmark: _Ref48393895][bookmark: _Toc49837488][bookmark: _Toc52951691]Creates
The Table code generation tag creates an ASP.NET control tag in the ASPX or ASCX file. This ASP.NET control tag may contain additional ASP.NET control tags to display the field values from a row in the database table.
[bookmark: _Toc46552834][bookmark: _Toc47758973]Editable Tables
Iron Speed Designer does not differentiate between display-only and editable tables. Individual fields within the table may be display-only or editable. To make an editable table, set the individual fields within the table to be editable by selecting the Text Box style in the Property Sheet. You can also set some fields to be editable, while other fields are display-only.
[bookmark: _Toc46552837][bookmark: _Toc47758976]Examples
<GEN:Table Name=“EmployeesTable”>
	<!-- other HTML code to specify the rows and columns of a table -->
</GEN:Table>
[bookmark: _Ref81891472]
[bookmark: _Toc46307894][bookmark: _Toc46552825][bookmark: _Toc47676594][bookmark: _Toc47758964][bookmark: _Ref48479076][bookmark: _Toc53046059][bookmark: _Toc64196214][bookmark: _Toc74401591][bookmark: _Toc74456340][bookmark: _Toc414871964]Text Tag
[bookmark: _Toc46552826][bookmark: _Toc47758965]Purpose
The Text code generation tag places text on the page. There is no limitation to the size of the text specified – you are only limited by the memory and resources on your server. The Text code generation tag does not create a server-side control, but instead places the actual text within the ASPX page or ASCX control.
	[image:]
	Text displayed by the Text tag.

[bookmark: _Toc46552829][bookmark: _Toc47758968]Examples
<GEN:Text Name=“GreatDeals”/>
[bookmark: _Toc46552827][bookmark: _Toc47758966][bookmark: _Ref81891627]
[bookmark: _Ref254886768][bookmark: _Toc414871965]UpdatePanel Control

Smooth Panel Update Limitations for Nested Tables
Not all .NET controls are compatible with the smooth panel update feature, which is implemented, in part, using the Ajax UpdatePanel control. These .NET controls are known to not be compatible with the smooth panel update feature:
· DetailsView when their EnableSortingAndPagingCallbacks is also set to True
· GridView when their EnableSortingAndPagingCallbacks is also set to True
· Login, PasswordRecovery, ChangePassword and CreateUserWizard controls whose contents have not been converted to editable templates
· FileUpload controls
· Menu controls
· Substitution controls
· TreeView controls
· Validation controls.
· Web parts controls.
In addition to the above controls, any button control which performs a file download will not work when used with the smooth panel update feature. To solve this problem, add the PostBack property to the button control in Iron Speed Designer Propert Sheet and set it to ‘True’.
Controls not compatible with the .NET UpdatePanel control can still be used in a page but must be placed outside of the UpdatePanel controls. Some controls can be used within the UpdatePanel control, but only if they are used in specific ways. To find out more information, please refer the section “Controls that Are Not Compatible with UpdatePanel Controls” in:
http://ajax.asp.net/docs/overview/UpdatePanelOverview.aspx
According to Microsoft:
All other controls work inside UpdatePanel controls. However, in some circumstances, a control might not work as expected inside an UpdatePanel control. These circumstances include the following:
· Registering script by calling registration methods of the ClientScriptManager control.
· Rendering script or markup directly during control rendering, such as by calling the Write(String) method.
If the control calls script registration methods of the ClientScriptManager control, you could use corresponding script registration methods of the ScriptManager control instead. In that case, the control can work inside an UpdatePanel control.
Nested UpdatePanel controls trigger traditional postbacks only in the outermost UpdatePanel control. Hence, only button controls cointained within the outermost UpdatePanel control may have their PostBack property set to True. All button controls nested inside inner UpdatePanel controls can refresh the UpdatePanel control only by performing an asynchronous postback; they may not have their PostBack property set to True.
Smooth Panel Update Limitations with View State Options
In some cases, certain actions will not work when Smooth Panel Update is enabled for a control and the View State is set other than to ‘Page’. These are known to be problematic:
· Clicking the ‘Save’ button when adding data to a Table panel will not save the data entered when View State is set to Session. Set the View State to ‘Page’ to enable data saving.
· Selecting a value in a dropdown list box can cause a page to go ‘blank’.
· JavaScript errors may occur if the panel control’s name contains non-English language characters or if other control names or ID values contain non-English characters.

[bookmark: _Toc46307915][bookmark: _Toc46552912][bookmark: _Toc47676615][bookmark: _Toc47759051][bookmark: _Ref48480000][bookmark: _Toc53046080][bookmark: _Toc64196235][bookmark: _Toc74401612][bookmark: _Toc74456361][bookmark: _Ref129497975][bookmark: _Toc414871966]Use Tag
[bookmark: _Toc46552913][bookmark: _Toc47759052]Purpose
The Use tag is an extremely powerful feature in Iron Speed Designer and allows you to include other reusable components on a page. The reusable components allow you to use common components across multiple pages. Changing the component once will change all of the pages that use this component.
For example, you can create a menu that is common across the entire application and reuse this menu component on each page by including or “using” the component on the page. Similarly, the header and footer on each page can be created as components and each page can refer to them in its own layout.
Custom user controls must implement the IncludeComponent interface in order to compile and run properly.
Drag and drop Include Ascx Component from Toolbox > GEN section to insert GEN:Use tag.
[bookmark: _Toc46552916][bookmark: _Toc47759055]Examples
<GEN:Use Name=“MyMenu” />
<GEN:Use Name=“OKButton” />

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

